The Structure of Minimal Steiner Trees in the Neighborhoods of the Lunes of Their Edges
Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 353-370.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a complete description of small neighborhoods of the closures of lunes of the edges of Steiner minimal trees (Theorem 1.1); to this end, we prove a generalization of a stabilization theorem for embedded locally minimal trees [1]; the case of two such disjoint trees is considered (Theorem 2.2).
Keywords: Steiner minimal tree, locally minimal tree, lune of an edge of a tree, linear graph, shortest tree.
@article{MZM_2012_91_3_a3,
     author = {A. O. Ivanov and O. A. S'edina and A. A. Tuzhilin},
     title = {The {Structure} of {Minimal} {Steiner} {Trees} in the {Neighborhoods} of the {Lunes} of {Their} {Edges}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {353--370},
     publisher = {mathdoc},
     volume = {91},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a3/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - O. A. S'edina
AU  - A. A. Tuzhilin
TI  - The Structure of Minimal Steiner Trees in the Neighborhoods of the Lunes of Their Edges
JO  - Matematičeskie zametki
PY  - 2012
SP  - 353
EP  - 370
VL  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a3/
LA  - ru
ID  - MZM_2012_91_3_a3
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A O. A. S'edina
%A A. A. Tuzhilin
%T The Structure of Minimal Steiner Trees in the Neighborhoods of the Lunes of Their Edges
%J Matematičeskie zametki
%D 2012
%P 353-370
%V 91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a3/
%G ru
%F MZM_2012_91_3_a3
A. O. Ivanov; O. A. S'edina; A. A. Tuzhilin. The Structure of Minimal Steiner Trees in the Neighborhoods of the Lunes of Their Edges. Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 353-370. http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a3/

[1] A. O. Ivanov, A. A. Tuzhilin, “Stabilizatsiya lokalno minimalnykh derevev”, Matem. zametki, 86:4 (2009), 512–524 | MR | Zbl

[2] A. O. Ivanov, A. A. Tuzhilin, Teoriya ekstremalnykh setei, Izd-vo IKI, M., 2003

[3] M. R. Garey, R. L. Graham, D. S. Johnson, “Some NP-complete geometric problems”, Eighth Annual ACM Symposium on Theory of Computing (Hershey, Pa., 1976), Assoc. Comput. Mach.,, New York, 1976, 10–22 | MR | Zbl

[4] E. N. Gilbert, H. O. Pollak, “Steiner minimal trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl