The Structure of Minimal Steiner Trees in the Neighborhoods of the Lunes of Their Edges
Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 353-370
Cet article a éte moissonné depuis la source Math-Net.Ru
We give a complete description of small neighborhoods of the closures of lunes of the edges of Steiner minimal trees (Theorem 1.1); to this end, we prove a generalization of a stabilization theorem for embedded locally minimal trees [1]; the case of two such disjoint trees is considered (Theorem 2.2).
Keywords:
Steiner minimal tree, locally minimal tree, lune of an edge of a tree, linear graph, shortest tree.
@article{MZM_2012_91_3_a3,
author = {A. O. Ivanov and O. A. S'edina and A. A. Tuzhilin},
title = {The {Structure} of {Minimal} {Steiner} {Trees} in the {Neighborhoods} of the {Lunes} of {Their} {Edges}},
journal = {Matemati\v{c}eskie zametki},
pages = {353--370},
year = {2012},
volume = {91},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a3/}
}
TY - JOUR AU - A. O. Ivanov AU - O. A. S'edina AU - A. A. Tuzhilin TI - The Structure of Minimal Steiner Trees in the Neighborhoods of the Lunes of Their Edges JO - Matematičeskie zametki PY - 2012 SP - 353 EP - 370 VL - 91 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a3/ LA - ru ID - MZM_2012_91_3_a3 ER -
A. O. Ivanov; O. A. S'edina; A. A. Tuzhilin. The Structure of Minimal Steiner Trees in the Neighborhoods of the Lunes of Their Edges. Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 353-370. http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a3/
[1] A. O. Ivanov, A. A. Tuzhilin, “Stabilizatsiya lokalno minimalnykh derevev”, Matem. zametki, 86:4 (2009), 512–524 | MR | Zbl
[2] A. O. Ivanov, A. A. Tuzhilin, Teoriya ekstremalnykh setei, Izd-vo IKI, M., 2003
[3] M. R. Garey, R. L. Graham, D. S. Johnson, “Some NP-complete geometric problems”, Eighth Annual ACM Symposium on Theory of Computing (Hershey, Pa., 1976), Assoc. Comput. Mach.,, New York, 1976, 10–22 | MR | Zbl
[4] E. N. Gilbert, H. O. Pollak, “Steiner minimal trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl