On a Statement Equivalent to the Riemann Hypothesis
Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 347-352
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove a statement equivalent to the Riemann hypothesis.
Keywords:
Riemann zeta function, Riemann hypothesis.
@article{MZM_2012_91_3_a2,
author = {G. Donadze},
title = {On a {Statement} {Equivalent} to the {Riemann} {Hypothesis}},
journal = {Matemati\v{c}eskie zametki},
pages = {347--352},
year = {2012},
volume = {91},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a2/}
}
G. Donadze. On a Statement Equivalent to the Riemann Hypothesis. Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 347-352. http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a2/
[1] H. Davenport, Multiplicative Number Theory, Grad. Texts in Math., 74, Springer-Verlag, New York, 2000 | MR | Zbl
[2] S. M. Voronin, A. A. Karatsuba, Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 | MR | Zbl
[3] J. E. Littlewood, “Sur la distribution des nombres premiers”, C. R. Acad. Sci. Paris, 158 (1914), 1869–1872 | Zbl
[4] K. Prachar, Primzahlverteilung, Grundlehren Math. Wiss., 91, Springer-Verlag, Berlin, 1957 | MR | Zbl
[5] A. A. Karatsuba, “O chisle peremen znakov funktsii $R_1(x)$ i ee srednikh znacheniyakh”, Chebyshevskii sb., 6:2(14) (2005), 163–183 | MR | Zbl
[6] A. A. Karatsuba, “O priblizhenii funktsii $\pi(x)$”, Chebyshevskii sb., 5:4(12) (2004), 5–20 | MR | Zbl