Resolvents of Operators with Distant Perturbations
Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 464-466.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Schrödinger operator, distant perturbation of an operator, real potential, strong resolvent convergence, closed operator.
@article{MZM_2012_91_3_a12,
     author = {A. M. Golovina},
     title = {Resolvents of {Operators} with {Distant} {Perturbations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {464--466},
     publisher = {mathdoc},
     volume = {91},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a12/}
}
TY  - JOUR
AU  - A. M. Golovina
TI  - Resolvents of Operators with Distant Perturbations
JO  - Matematičeskie zametki
PY  - 2012
SP  - 464
EP  - 466
VL  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a12/
LA  - ru
ID  - MZM_2012_91_3_a12
ER  - 
%0 Journal Article
%A A. M. Golovina
%T Resolvents of Operators with Distant Perturbations
%J Matematičeskie zametki
%D 2012
%P 464-466
%V 91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a12/
%G ru
%F MZM_2012_91_3_a12
A. M. Golovina. Resolvents of Operators with Distant Perturbations. Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 464-466. http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a12/

[1] V. Kostrykin, R. Schrader, Rev. Math. Phys., 6:5 (1994), 833–853 | DOI | MR | Zbl

[2] E. B. Davies, Spectral Theory and Differential Operators, Cambridge Stud. Adv. Math., 42, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[3] P. Aventini, R. Seiler, Comm. Math. Phys., 41:2 (1975), 119–134 | DOI | MR

[4] D. Borisov, Math. Phys. Anal. Geom., 10:2 (2007), 155–196 | DOI | MR | Zbl