An Example of a Piecewise Linear Ergodic Polymorphism
Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 323-330.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider dynamical systems introduced by Vershik and called polymorphisms. In particular, such systems encompass the class of multivalued mappings of a closed interval onto itself which have an invariant measure. Polymorphisms arise in different areas of mathematics and mechanics, for example, in the problem of the destruction of the adiabatic invariant. We are concerned with the ergodic properties of polymorphisms. The first section deals with the main notions. In Secs. 2 and 3, we consider an example of a three-parameter family of ergodic polymorphisms formed by piecewise linear mappings.
Mots-clés : polymorphism
Keywords: piecewise linear mapping, ergodicity, three-parameter family of ergodic polymorphisms.
@article{MZM_2012_91_3_a0,
     author = {P. E. Golubtsov},
     title = {An {Example} of a {Piecewise} {Linear} {Ergodic} {Polymorphism}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--330},
     publisher = {mathdoc},
     volume = {91},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a0/}
}
TY  - JOUR
AU  - P. E. Golubtsov
TI  - An Example of a Piecewise Linear Ergodic Polymorphism
JO  - Matematičeskie zametki
PY  - 2012
SP  - 323
EP  - 330
VL  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a0/
LA  - ru
ID  - MZM_2012_91_3_a0
ER  - 
%0 Journal Article
%A P. E. Golubtsov
%T An Example of a Piecewise Linear Ergodic Polymorphism
%J Matematičeskie zametki
%D 2012
%P 323-330
%V 91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a0/
%G ru
%F MZM_2012_91_3_a0
P. E. Golubtsov. An Example of a Piecewise Linear Ergodic Polymorphism. Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 323-330. http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a0/

[1] A. M. Vershik, “Polymorphisms, Markov processes, and quasi-similarity”, Discrete Contin. Dyn. Syst., 13:5 (2005), 1305–1324 | DOI | MR | Zbl

[2] A. M. Vershik, “Mnogoznachnye otobrazheniya s invariantnoi meroi (polimorfizmy) i markovskie operatory”, Problemy teorii veroyatnostnykh raspredelenii. IV, Zap. nauchn. sem. LOMI, 72, Izd-vo «Nauka», Leningrad. otd., L., 1977, 26–61 | MR | Zbl

[3] A. Neishtadt, D. Treschev, “Polymorphisms and adiabatic chaos”, Ergodic Theory Dynam. Systems, 31:1 (2011), 259–284 | DOI | MR | Zbl