On Finite-Dimensional Semisimple Hopf Algebras of Dimension $n(n+1)$
Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 253-269
Voir la notice de l'article provenant de la source Math-Net.Ru
We study finite-dimensional semisimple Hopf algebras over an algebraically closed field which have only one summand of dimension greater than $1$ in their semisimple decompositions and assume that the group of group elements in the dual Hopf algebra is cyclic and has minimal order. Under given constraints, we obtain a detailed description of the comultiplication and the antipode.
Keywords:
semisimple Hopf algebra, coassociativity of comultiplication, cocommutative Hopf algebra.
Mots-clés : comultiplication, antipode, semisimple decomposition, homomorphism
Mots-clés : comultiplication, antipode, semisimple decomposition, homomorphism
@article{MZM_2012_91_2_a7,
author = {S. Yu. Spiridonova},
title = {On {Finite-Dimensional} {Semisimple} {Hopf} {Algebras} of {Dimension} $n(n+1)$},
journal = {Matemati\v{c}eskie zametki},
pages = {253--269},
publisher = {mathdoc},
volume = {91},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a7/}
}
S. Yu. Spiridonova. On Finite-Dimensional Semisimple Hopf Algebras of Dimension $n(n+1)$. Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 253-269. http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a7/