On the Structure of a Semigroup of Operators with Finite-Dimensional Ranges
Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 240-252

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we describe the structure of a strongly continuous operator semigroup $T(t)$ (where $T\colon \mathbb{R}_+ \to \operatorname{End}X$ and $X$ is a complex Banach space) for which $\operatorname{Im}{T(t)}$ is a finite-dimensional space for all $t>0$. It is proved that such a semigroup is always the direct sum of a zero semigroup and a semigroup acting in a finite-dimensional space. As examples of applications, we discuss differential equations containing linear relations, orbits of a special form, and the possibility of embedding an operator in a $C_0$-semigroup.
Keywords: operator semigroup, strong continuity, complex Banach space, Banach algebra, spectrum of an operator, bounded linear operator.
@article{MZM_2012_91_2_a6,
     author = {A. V. Pechkurov},
     title = {On the {Structure} of a {Semigroup} of {Operators} with {Finite-Dimensional} {Ranges}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {240--252},
     publisher = {mathdoc},
     volume = {91},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a6/}
}
TY  - JOUR
AU  - A. V. Pechkurov
TI  - On the Structure of a Semigroup of Operators with Finite-Dimensional Ranges
JO  - Matematičeskie zametki
PY  - 2012
SP  - 240
EP  - 252
VL  - 91
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a6/
LA  - ru
ID  - MZM_2012_91_2_a6
ER  - 
%0 Journal Article
%A A. V. Pechkurov
%T On the Structure of a Semigroup of Operators with Finite-Dimensional Ranges
%J Matematičeskie zametki
%D 2012
%P 240-252
%V 91
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a6/
%G ru
%F MZM_2012_91_2_a6
A. V. Pechkurov. On the Structure of a Semigroup of Operators with Finite-Dimensional Ranges. Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 240-252. http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a6/