Blow-Up of the Solution of an Inhomogeneous System of Sobolev-Type Equations
Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 225-239
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a model system of two inhomogeneous nonlinear Sobolev-type equations of sixth order with second-order time derivative and prove the local (with respect to time) solvability of the problem. We state conditions under which the blow-up of the solution occurs in finite time and find an upper bound for the blow-up time.
Keywords:
system of Sobolev-type equations, blow-up of solutions, blow-up time, ion-sound wave, locally Lipschitz operator, Banach space, Friedrichs inequality.
@article{MZM_2012_91_2_a5,
author = {Yu. V. Mukhartova and A. A. Panin},
title = {Blow-Up of the {Solution} of an {Inhomogeneous} {System} of {Sobolev-Type} {Equations}},
journal = {Matemati\v{c}eskie zametki},
pages = {225--239},
publisher = {mathdoc},
volume = {91},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a5/}
}
TY - JOUR AU - Yu. V. Mukhartova AU - A. A. Panin TI - Blow-Up of the Solution of an Inhomogeneous System of Sobolev-Type Equations JO - Matematičeskie zametki PY - 2012 SP - 225 EP - 239 VL - 91 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a5/ LA - ru ID - MZM_2012_91_2_a5 ER -
Yu. V. Mukhartova; A. A. Panin. Blow-Up of the Solution of an Inhomogeneous System of Sobolev-Type Equations. Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 225-239. http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a5/