Blow-Up of the Solution of an Inhomogeneous System of Sobolev-Type Equations
Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 225-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a model system of two inhomogeneous nonlinear Sobolev-type equations of sixth order with second-order time derivative and prove the local (with respect to time) solvability of the problem. We state conditions under which the blow-up of the solution occurs in finite time and find an upper bound for the blow-up time.
Keywords: system of Sobolev-type equations, blow-up of solutions, blow-up time, ion-sound wave, locally Lipschitz operator, Banach space, Friedrichs inequality.
@article{MZM_2012_91_2_a5,
     author = {Yu. V. Mukhartova and A. A. Panin},
     title = {Blow-Up of the {Solution} of an {Inhomogeneous} {System} of {Sobolev-Type} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {225--239},
     publisher = {mathdoc},
     volume = {91},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a5/}
}
TY  - JOUR
AU  - Yu. V. Mukhartova
AU  - A. A. Panin
TI  - Blow-Up of the Solution of an Inhomogeneous System of Sobolev-Type Equations
JO  - Matematičeskie zametki
PY  - 2012
SP  - 225
EP  - 239
VL  - 91
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a5/
LA  - ru
ID  - MZM_2012_91_2_a5
ER  - 
%0 Journal Article
%A Yu. V. Mukhartova
%A A. A. Panin
%T Blow-Up of the Solution of an Inhomogeneous System of Sobolev-Type Equations
%J Matematičeskie zametki
%D 2012
%P 225-239
%V 91
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a5/
%G ru
%F MZM_2012_91_2_a5
Yu. V. Mukhartova; A. A. Panin. Blow-Up of the Solution of an Inhomogeneous System of Sobolev-Type Equations. Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 225-239. http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a5/

[1] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 3–383 | MR | Zbl

[2] H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+\mathscr F(u)$”, Arch. Rational Mech. Analys., 51 (1973), 371–386 | MR | Zbl

[3] H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+\mathscr F(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | MR | Zbl

[4] V. K. Kalantarov, O. A. Ladyzhenskaya, “O vozniknovenii kollapsov dlya kvazilineinykh uravnenii parabolicheskogo i giperbolicheskogo tipov”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 10, Zap. nauchn. sem. LOMI, 69, Izd-vo «Nauka», Leningrad. otd., L., 1977, 77–102 | MR | Zbl

[5] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl

[6] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR | Zbl

[7] V. A. Galaktionov, S. I. Pokhozhaev, “Uravneniya nelineinoi dispersii tretego poryadka: udarnye volny, volny razrezheniya i razrusheniya”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1819–1846 | MR | Zbl

[8] M. O. Korpusov, Razrushenie v neklassicheskikh volnovykh uravneniyakh, URSS, M., 2010, Gl. 4, § 2