A Mixed Problem for the Dirac--Schwinger Extension of the Maxwell System
Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 184-199

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the topical, but insufficiently studied problem of finding conditions for the solvability of a $L_2$-well-posed initial boundary-value problem for the linear system of four hyperbolic-type equations (Maxwell equations for the vector-potential) with dissipation, a zero initial condition, and an inhomogeneous boundary condition.
Keywords: Maxwell system of equations, Dirac–Schwinger extension of the Maxwell system, hyperbolic-type equation, nonequilibrium process, pseudodifferential operator, initial boundary-value problem
Mots-clés : Fourier transform.
@article{MZM_2012_91_2_a2,
     author = {I. V. Zagrebaev},
     title = {A {Mixed} {Problem} for the {Dirac--Schwinger} {Extension} of the {Maxwell} {System}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {184--199},
     publisher = {mathdoc},
     volume = {91},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a2/}
}
TY  - JOUR
AU  - I. V. Zagrebaev
TI  - A Mixed Problem for the Dirac--Schwinger Extension of the Maxwell System
JO  - Matematičeskie zametki
PY  - 2012
SP  - 184
EP  - 199
VL  - 91
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a2/
LA  - ru
ID  - MZM_2012_91_2_a2
ER  - 
%0 Journal Article
%A I. V. Zagrebaev
%T A Mixed Problem for the Dirac--Schwinger Extension of the Maxwell System
%J Matematičeskie zametki
%D 2012
%P 184-199
%V 91
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a2/
%G ru
%F MZM_2012_91_2_a2
I. V. Zagrebaev. A Mixed Problem for the Dirac--Schwinger Extension of the Maxwell System. Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 184-199. http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a2/