A Mixed Problem for the Dirac--Schwinger Extension of the Maxwell System
Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 184-199
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to the topical, but insufficiently studied problem of finding conditions for the solvability of a $L_2$-well-posed initial boundary-value problem for the linear system of four hyperbolic-type equations (Maxwell equations for the vector-potential) with dissipation, a zero initial condition, and an inhomogeneous boundary condition.
Keywords:
Maxwell system of equations, Dirac–Schwinger extension of the Maxwell system, hyperbolic-type equation, nonequilibrium process, pseudodifferential operator, initial boundary-value problem
Mots-clés : Fourier transform.
Mots-clés : Fourier transform.
@article{MZM_2012_91_2_a2,
author = {I. V. Zagrebaev},
title = {A {Mixed} {Problem} for the {Dirac--Schwinger} {Extension} of the {Maxwell} {System}},
journal = {Matemati\v{c}eskie zametki},
pages = {184--199},
publisher = {mathdoc},
volume = {91},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a2/}
}
I. V. Zagrebaev. A Mixed Problem for the Dirac--Schwinger Extension of the Maxwell System. Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 184-199. http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a2/