On the Unitary Equivalence of the Proper Extensions of a Hermitian Operator and the Weyl Function
Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 316-320.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Hermitian operator, Weyl function, unitary equivalence, deficiency index, dual pair of operators, Nevanlinna operator function, spectral measure.
Mots-clés : Lebesgue measure
@article{MZM_2012_91_2_a14,
     author = {M. M. Malamud and V. I. Mogilevskii and S. Hassi},
     title = {On the {Unitary} {Equivalence} of the {Proper} {Extensions} of a {Hermitian} {Operator} and the {Weyl} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {316--320},
     publisher = {mathdoc},
     volume = {91},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a14/}
}
TY  - JOUR
AU  - M. M. Malamud
AU  - V. I. Mogilevskii
AU  - S. Hassi
TI  - On the Unitary Equivalence of the Proper Extensions of a Hermitian Operator and the Weyl Function
JO  - Matematičeskie zametki
PY  - 2012
SP  - 316
EP  - 320
VL  - 91
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a14/
LA  - ru
ID  - MZM_2012_91_2_a14
ER  - 
%0 Journal Article
%A M. M. Malamud
%A V. I. Mogilevskii
%A S. Hassi
%T On the Unitary Equivalence of the Proper Extensions of a Hermitian Operator and the Weyl Function
%J Matematičeskie zametki
%D 2012
%P 316-320
%V 91
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a14/
%G ru
%F MZM_2012_91_2_a14
M. M. Malamud; V. I. Mogilevskii; S. Hassi. On the Unitary Equivalence of the Proper Extensions of a Hermitian Operator and the Weyl Function. Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 316-320. http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a14/

[1] V. I. Gorbachuk, M. L. Gorbachuk, Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Naukova Dumka, Kiev, 1984 | MR | Zbl

[2] V. A. Derkach, M. M. Malamud, J. Funct. Anal., 95:1 (1991), 1–95 | DOI | MR | Zbl

[3] V. A. Derkach, M. M. Malamud, J. Math. Sci., 73:2 (1995), 141–242 | DOI | MR | Zbl

[4] M. M. Malamud, V. I. Mogilevskii, Methods Funct. Anal. Topology, 8:4 (2002), 72–100 | MR | Zbl

[5] M. Brown, J. Hinchcliffe, M. Marletta, S. Naboko, I. Wood, Integral Equations Operator Theory, 63:3 (2009), 297–320 | DOI | MR | Zbl

[6] Yu. M. Arlinskii, S. Hassi, H. de Snoo, Operator Theory and Indefinite Inner Product Spaces, Oper. Theory Adv. Appl., 163, Birkhäuser Verlag, Basel, 2006, 23–54 | DOI | MR | Zbl

[7] D. Z. Arov, M. A. Nudelman, Matem. sb., 193:6 (2002), 3–24 | MR | Zbl

[8] V. E. Lyantse, O. G. Storozh, Metody teorii neogranichennykh operatorov, Naukova Dumka, Kiev, 1983 | MR

[9] M. S. Brodskii, Treugolnye i zhordanovy predstavleniya lineinykh operatorov, Nauka, M., 1969 | MR | Zbl