The Lie Algebra of the Group of Motions of a Phenomenologically Symmetric Geometry
Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 312-315
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
Lie algebra of the group of motions, phenomenologically symmetric geometry, metric function, local motion.
@article{MZM_2012_91_2_a13,
author = {V. A. Kyrov},
title = {The {Lie} {Algebra} of the {Group} of {Motions} of a {Phenomenologically} {Symmetric} {Geometry}},
journal = {Matemati\v{c}eskie zametki},
pages = {312--315},
year = {2012},
volume = {91},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a13/}
}
V. A. Kyrov. The Lie Algebra of the Group of Motions of a Phenomenologically Symmetric Geometry. Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 312-315. http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a13/
[1] G. G. Mikhailichenko, Dokl. AN SSSR, 269:2 (1983), 284–288 | MR | Zbl
[2] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl
[3] V. A. Kyrov, “Shestimernye algebry Li grupp dvizhenii trekhmernykh fenomenologicheski simmetrichnykh geometrii”: G. G. Mikhailichenko, Polimetricheskie geometrii, Izd-vo Novosibirsk. gos. un-ta, Novosibirsk, 2001, 116–143