The Lie Algebra of the Group of Motions of a Phenomenologically Symmetric Geometry
Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 312-315.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Lie algebra of the group of motions, phenomenologically symmetric geometry, metric function, local motion.
@article{MZM_2012_91_2_a13,
     author = {V. A. Kyrov},
     title = {The {Lie} {Algebra} of the {Group} of {Motions} of a {Phenomenologically} {Symmetric} {Geometry}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {312--315},
     publisher = {mathdoc},
     volume = {91},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a13/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - The Lie Algebra of the Group of Motions of a Phenomenologically Symmetric Geometry
JO  - Matematičeskie zametki
PY  - 2012
SP  - 312
EP  - 315
VL  - 91
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a13/
LA  - ru
ID  - MZM_2012_91_2_a13
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T The Lie Algebra of the Group of Motions of a Phenomenologically Symmetric Geometry
%J Matematičeskie zametki
%D 2012
%P 312-315
%V 91
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a13/
%G ru
%F MZM_2012_91_2_a13
V. A. Kyrov. The Lie Algebra of the Group of Motions of a Phenomenologically Symmetric Geometry. Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 312-315. http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a13/

[1] G. G. Mikhailichenko, Dokl. AN SSSR, 269:2 (1983), 284–288 | MR | Zbl

[2] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[3] V. A. Kyrov, “Shestimernye algebry Li grupp dvizhenii trekhmernykh fenomenologicheski simmetrichnykh geometrii”: G. G. Mikhailichenko, Polimetricheskie geometrii, Izd-vo Novosibirsk. gos. un-ta, Novosibirsk, 2001, 116–143