Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_91_2_a12, author = {V. A. Voblyi}, title = {Enumeration of {Labeled} {Connected} {Bicyclic} and {Tricyclic} {Graphs} without {Bridges}}, journal = {Matemati\v{c}eskie zametki}, pages = {308--311}, publisher = {mathdoc}, volume = {91}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a12/} }
V. A. Voblyi. Enumeration of Labeled Connected Bicyclic and Tricyclic Graphs without Bridges. Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 308-311. http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a12/
[1] E. M. Wright, J. Graph Theory, 2:4 (1978), 299–305 | DOI | MR | Zbl
[2] P. Hanlon, R. W. Robinson, J. Combin. Theory Ser. B, 33:3 (1982), 276–305 | DOI | MR | Zbl
[3] The on-line encyclopedia of integer sequences, http://www.research.att.com/~njas/sequences
[4] V. N. Sachkov, Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, M., 2004
[5] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR | Zbl
[6] E. M. Wright, Proc. Roy. Soc. Edinburgh Sect. A, 91:3-4 (1982), 205–212 | MR | Zbl
[7] E. F. Dmitriev, Perechislenie otmechennykh grafov s dannymi strukturnymi svoistvami, Avtoreferat dis. $\dots$ kand. fiz.-matem. nauk, In-t matem. AN BSSR, Minsk, 1986