On Some Classes of Nilgroups
Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 297-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions for a direct product of connected groups (under the additional assumption that some subsets are nonmeasurable) to be a nilgroup are found.
Keywords: Abelian group, nilgroup, periodic group, connected group, slender group
Mots-clés : divisible group, torsion-free group, quasihomogenous group.
@article{MZM_2012_91_2_a10,
     author = {A. R. Chekhlov},
     title = {On {Some} {Classes} of {Nilgroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {297--304},
     publisher = {mathdoc},
     volume = {91},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a10/}
}
TY  - JOUR
AU  - A. R. Chekhlov
TI  - On Some Classes of Nilgroups
JO  - Matematičeskie zametki
PY  - 2012
SP  - 297
EP  - 304
VL  - 91
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a10/
LA  - ru
ID  - MZM_2012_91_2_a10
ER  - 
%0 Journal Article
%A A. R. Chekhlov
%T On Some Classes of Nilgroups
%J Matematičeskie zametki
%D 2012
%P 297-304
%V 91
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a10/
%G ru
%F MZM_2012_91_2_a10
A. R. Chekhlov. On Some Classes of Nilgroups. Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 297-304. http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a10/

[1] L. Fuks, Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974 ; Т. 2, Мир, М., 1977 | MR | Zbl | MR | Zbl

[2] A. M. Ivanov, “Ob odnom svoistve $p$-servantnykh podgrupp gruppy tselykh $p$-adicheskikh chisel”, Matem. zametki, 27:6 (1980), 859–867 | MR | Zbl

[3] A. R. Chekhlov, “O nekotorykh klassakh abelevykh grupp bez krucheniya, blizkikh k kvaziservantno in'ektivnym”, Izv. vuzov. Matem., 1985, no. 8, 82–83 | MR | Zbl

[4] A. R. Chekhlov, “Ob abelevykh gruppakh bez krucheniya, blizkikh k kvaziservantno in'ektivnym”, Abelevy gruppy i moduli, Tomsk, 1985, 117–127

[5] A. R. Chekhlov, “O pryamykh proizvedeniyakh i pryamykh summakh abelevykh $QCPI$-grupp bez krucheniya”, Izv. vuzov. Matem., 1990, no. 4, 58–67 | MR | Zbl

[6] A. A. Fomin, “Tenzornoe proizvedenie abelevykh grupp bez krucheniya”, Sib. matem. zhurn., 16:5 (1975), 1071–1080 | MR | Zbl

[7] A. R. Chekhlov, “Ob abelevykh gruppakh, vse podgruppy kotorykh yavlyayutsya idealami”, Vestnik Tomsk. un-ta. Matem. i mekh., 2009, no. 3(7), 64–67

[8] A. R. Chekhlov, “O podgruppakh abelevykh grupp, invariantnykh otnositelno proektsii”, Fundament. i prikl. matem., 14:6 (2008), 211–218 | MR

[9] A. R. Chekhlov, “Separabelnye i vektornye gruppy, proektivno invariantnye podgruppy kotorykh vpolne invariantny”, Sib. matem. zhurn., 50:4 (2009), 942–953 | MR | Zbl

[10] A. R. Chekhlov, “$E$-nilpotentnye i $E$-razreshimye abelevy gruppy klassa 2”, Vestnik Tomsk. un-ta. Matem. i mekh., 2010, no. 1(9), 59–71

[11] A. R. Chekhlov, “Ob abelevykh gruppakh s normalnym koltsom endomorfizmov”, Algebra i logika, 48:4 (2009), 520–539 | MR

[12] A. R. Chekhlov, “O kommutatorno invariantnykh podgruppakh abelevykh grupp”, Sib. matem. zhurn., 51:5 (2010), 1163–1174 | MR | Zbl