The Kolmogorov and Stechkin Problems for Classes of Functions Whose Second Derivative Belongs to the Orlicz Space
Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 172-183

Voir la notice de l'article provenant de la source Math-Net.Ru

For any $t\in [0,1]$, we obtain the exact value of the modulus of continuity $$ \omega_N(D_t,\delta):=\sup\{|x'(t)|:\|x\|_{L_{\infty}[0,1]}\le \delta,\, \|x''\|_{L_{N}^*[0,1]}\le 1\}, $$ where $L_N^*$ is the dual Orlicz space with Luxemburg norm and $D_t$ is the operator of differentition at the point $t$. As an application, we state necessary and sufficient conditions in the Kolmogorov problem for three numbers. Also we solve the Stechkin problem, i.e., the problem of approximating an unbounded operator of differentition $D_t$ by bounded linear operators for the class of functions $x$ such that $\|x''\|_{L_{N}^*[0,1]}\le 1$.
Keywords: Kolmogorov problem for three numbers, Stechkin problem, Orlicz space, operator of differentition, Banach space, modulus of continuity.
Mots-clés : Luxemburg norm
@article{MZM_2012_91_2_a1,
     author = {Yu. V. Babenko and D. Skorokhodov},
     title = {The {Kolmogorov} and {Stechkin} {Problems} for {Classes} of {Functions} {Whose} {Second} {Derivative} {Belongs} to the {Orlicz} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {172--183},
     publisher = {mathdoc},
     volume = {91},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a1/}
}
TY  - JOUR
AU  - Yu. V. Babenko
AU  - D. Skorokhodov
TI  - The Kolmogorov and Stechkin Problems for Classes of Functions Whose Second Derivative Belongs to the Orlicz Space
JO  - Matematičeskie zametki
PY  - 2012
SP  - 172
EP  - 183
VL  - 91
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a1/
LA  - ru
ID  - MZM_2012_91_2_a1
ER  - 
%0 Journal Article
%A Yu. V. Babenko
%A D. Skorokhodov
%T The Kolmogorov and Stechkin Problems for Classes of Functions Whose Second Derivative Belongs to the Orlicz Space
%J Matematičeskie zametki
%D 2012
%P 172-183
%V 91
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a1/
%G ru
%F MZM_2012_91_2_a1
Yu. V. Babenko; D. Skorokhodov. The Kolmogorov and Stechkin Problems for Classes of Functions Whose Second Derivative Belongs to the Orlicz Space. Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 172-183. http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a1/