The Kolmogorov and Stechkin Problems for Classes of Functions Whose Second Derivative Belongs to the Orlicz Space
Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 172-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any $t\in [0,1]$, we obtain the exact value of the modulus of continuity $$ \omega_N(D_t,\delta):=\sup\{|x'(t)|:\|x\|_{L_{\infty}[0,1]}\le \delta,\, \|x''\|_{L_{N}^*[0,1]}\le 1\}, $$ where $L_N^*$ is the dual Orlicz space with Luxemburg norm and $D_t$ is the operator of differentition at the point $t$. As an application, we state necessary and sufficient conditions in the Kolmogorov problem for three numbers. Also we solve the Stechkin problem, i.e., the problem of approximating an unbounded operator of differentition $D_t$ by bounded linear operators for the class of functions $x$ such that $\|x''\|_{L_{N}^*[0,1]}\le 1$.
Keywords: Kolmogorov problem for three numbers, Stechkin problem, Orlicz space, operator of differentition, Banach space, modulus of continuity.
Mots-clés : Luxemburg norm
@article{MZM_2012_91_2_a1,
     author = {Yu. V. Babenko and D. Skorokhodov},
     title = {The {Kolmogorov} and {Stechkin} {Problems} for {Classes} of {Functions} {Whose} {Second} {Derivative} {Belongs} to the {Orlicz} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {172--183},
     publisher = {mathdoc},
     volume = {91},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a1/}
}
TY  - JOUR
AU  - Yu. V. Babenko
AU  - D. Skorokhodov
TI  - The Kolmogorov and Stechkin Problems for Classes of Functions Whose Second Derivative Belongs to the Orlicz Space
JO  - Matematičeskie zametki
PY  - 2012
SP  - 172
EP  - 183
VL  - 91
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a1/
LA  - ru
ID  - MZM_2012_91_2_a1
ER  - 
%0 Journal Article
%A Yu. V. Babenko
%A D. Skorokhodov
%T The Kolmogorov and Stechkin Problems for Classes of Functions Whose Second Derivative Belongs to the Orlicz Space
%J Matematičeskie zametki
%D 2012
%P 172-183
%V 91
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a1/
%G ru
%F MZM_2012_91_2_a1
Yu. V. Babenko; D. Skorokhodov. The Kolmogorov and Stechkin Problems for Classes of Functions Whose Second Derivative Belongs to the Orlicz Space. Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 172-183. http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a1/

[1] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Sovremennye problemy matematiki, Fizmatgiz, M., 1958 | MR | Zbl

[2] E. Landau, “Einige Ungleichungen fur zweimal differenzierbare Funktion”, Proc. London Math. Soc. (2), 13:1 (1913), 43–49 | DOI | Zbl

[3] M. K. Kwong, A. Zettl, Norm Inequalities for Derivatives and Differences, Lecture Notes in Math., 1536, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl

[4] V. F. Babenko, N. P. Korneichuk, V. A. Kofanov, S. A. Pichugov, Neravenstva dlya proizvodnykh i ikh prilozheniya, Naukova dumka, Kiev, 2003

[5] A. Yu. Shadrin, “To the Landau–Kolmogorov problem on a finite interval”, Open Problems in Approximation Theory, SCT Publ., Singapore, 1994, 192–204

[6] A. Pinkus, “Some extremal properties of perfect splines and the pointwise Landau problem on the finite interval”, J. Approx. Theory, 23:1 (1978), 37–64 | DOI | MR | Zbl

[7] Yu. V. Babenko, “Tochnye neravenstva tipa Landau dlya funktsii so vtorymi proizvodnymi iz prostranstv Orlicha”, Vestn. Dnepropetrovsk. un-ta, 2000, no. 2, 18–22

[8] V. I. Burenkov, V. A. Gusakov, “O tochnykh postoyannykh v neravenstvakh dlya modulya proizvodnoi”, Funktsionalnye prostranstva, priblizheniya, differentsialnye uravneniya, Sbornik statei. K 70-letiyu so dnya rozhdeniya chlena-korrespondenta RAN Olega Vladimirovicha Besova, Tr. MIAN, 243, Nauka, M., 2003, 104–126 | MR | Zbl

[9] N. P. Korneichuk, V. F. Babenko, A. A. Ligun, Ekstremalnye svoistva polinomov i splainov, Naukova dumka, Kiev, 1992 | MR | Zbl

[10] Yu. V. Babenko, “Potochechnye neravenstva tipa Landau–Kolmogorova dlya funktsii, opredelennykh na konechnom otrezke”, Ukr. matem. zhurn., 53:2 (2001), 238–243 | MR | Zbl

[11] S. B. Stechkin, “Nailuchshee priblizhenie lineinykh operatorov”, Matem. zametki, 1:2 (1967), 137–148 | MR | Zbl

[12] V. V. Arestov, “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, UMN, 51:6 (1996), 89–124 | MR | Zbl

[13] A. N. Kolmogorov, “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Uch. zapiski Mosk. gos. un-ta, 30, Izd-vo Mosk. un-ta, M., 1939, 3–16

[14] A. N. Kolmogorov, “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Izbrannye trudy. Matematika i mekhanika, Nauka, M., 1985, 252–263 | MR | Zbl