Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_91_2_a1, author = {Yu. V. Babenko and D. Skorokhodov}, title = {The {Kolmogorov} and {Stechkin} {Problems} for {Classes} of {Functions} {Whose} {Second} {Derivative} {Belongs} to the {Orlicz} {Space}}, journal = {Matemati\v{c}eskie zametki}, pages = {172--183}, publisher = {mathdoc}, volume = {91}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a1/} }
TY - JOUR AU - Yu. V. Babenko AU - D. Skorokhodov TI - The Kolmogorov and Stechkin Problems for Classes of Functions Whose Second Derivative Belongs to the Orlicz Space JO - Matematičeskie zametki PY - 2012 SP - 172 EP - 183 VL - 91 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a1/ LA - ru ID - MZM_2012_91_2_a1 ER -
%0 Journal Article %A Yu. V. Babenko %A D. Skorokhodov %T The Kolmogorov and Stechkin Problems for Classes of Functions Whose Second Derivative Belongs to the Orlicz Space %J Matematičeskie zametki %D 2012 %P 172-183 %V 91 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a1/ %G ru %F MZM_2012_91_2_a1
Yu. V. Babenko; D. Skorokhodov. The Kolmogorov and Stechkin Problems for Classes of Functions Whose Second Derivative Belongs to the Orlicz Space. Matematičeskie zametki, Tome 91 (2012) no. 2, pp. 172-183. http://geodesic.mathdoc.fr/item/MZM_2012_91_2_a1/
[1] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Sovremennye problemy matematiki, Fizmatgiz, M., 1958 | MR | Zbl
[2] E. Landau, “Einige Ungleichungen fur zweimal differenzierbare Funktion”, Proc. London Math. Soc. (2), 13:1 (1913), 43–49 | DOI | Zbl
[3] M. K. Kwong, A. Zettl, Norm Inequalities for Derivatives and Differences, Lecture Notes in Math., 1536, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
[4] V. F. Babenko, N. P. Korneichuk, V. A. Kofanov, S. A. Pichugov, Neravenstva dlya proizvodnykh i ikh prilozheniya, Naukova dumka, Kiev, 2003
[5] A. Yu. Shadrin, “To the Landau–Kolmogorov problem on a finite interval”, Open Problems in Approximation Theory, SCT Publ., Singapore, 1994, 192–204
[6] A. Pinkus, “Some extremal properties of perfect splines and the pointwise Landau problem on the finite interval”, J. Approx. Theory, 23:1 (1978), 37–64 | DOI | MR | Zbl
[7] Yu. V. Babenko, “Tochnye neravenstva tipa Landau dlya funktsii so vtorymi proizvodnymi iz prostranstv Orlicha”, Vestn. Dnepropetrovsk. un-ta, 2000, no. 2, 18–22
[8] V. I. Burenkov, V. A. Gusakov, “O tochnykh postoyannykh v neravenstvakh dlya modulya proizvodnoi”, Funktsionalnye prostranstva, priblizheniya, differentsialnye uravneniya, Sbornik statei. K 70-letiyu so dnya rozhdeniya chlena-korrespondenta RAN Olega Vladimirovicha Besova, Tr. MIAN, 243, Nauka, M., 2003, 104–126 | MR | Zbl
[9] N. P. Korneichuk, V. F. Babenko, A. A. Ligun, Ekstremalnye svoistva polinomov i splainov, Naukova dumka, Kiev, 1992 | MR | Zbl
[10] Yu. V. Babenko, “Potochechnye neravenstva tipa Landau–Kolmogorova dlya funktsii, opredelennykh na konechnom otrezke”, Ukr. matem. zhurn., 53:2 (2001), 238–243 | MR | Zbl
[11] S. B. Stechkin, “Nailuchshee priblizhenie lineinykh operatorov”, Matem. zametki, 1:2 (1967), 137–148 | MR | Zbl
[12] V. V. Arestov, “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, UMN, 51:6 (1996), 89–124 | MR | Zbl
[13] A. N. Kolmogorov, “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Uch. zapiski Mosk. gos. un-ta, 30, Izd-vo Mosk. un-ta, M., 1939, 3–16
[14] A. N. Kolmogorov, “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Izbrannye trudy. Matematika i mekhanika, Nauka, M., 1985, 252–263 | MR | Zbl