Weakly Koszul-Like Modules
Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 93-119
Voir la notice de l'article provenant de la source Math-Net.Ru
The Koszul-like property for any finitely generated graded modules over a Koszul-like algebra is investigated and the notion of weakly Koszul-like module is introduced. We show that a finitely generated graded module $M$ is a weakly Koszul-like module if and only if it can be approximated by Koszul-like graded submodules, which is equivalent to the fact that $\mathbf G(M)$ is a Koszul-like module, where $\mathbf G(M)$ denotes the associated graded module of $M$. As applications, the relationships between the minimal graded projective resolutions of $M$ and $\mathbf G(M)$, and the Koszul-like submodules are established. Moreover, the Koszul dual of a weakly Koszul-like module is proved to be generated in degree $0$ as a graded $E(A)$-module.
Mots-clés :
Koszul-like algebras, Koszul-like modules
Keywords: weakly Koszul-like modules, graded algebra, Jacobson radical, Yoneda product, projective resolution, commutative diagram, short exact sequence.
Keywords: weakly Koszul-like modules, graded algebra, Jacobson radical, Yoneda product, projective resolution, commutative diagram, short exact sequence.
@article{MZM_2012_91_1_a8,
author = {Pei-Sen Chen and Jia-Feng L\"u},
title = {Weakly {Koszul-Like} {Modules}},
journal = {Matemati\v{c}eskie zametki},
pages = {93--119},
publisher = {mathdoc},
volume = {91},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a8/}
}
Pei-Sen Chen; Jia-Feng Lü. Weakly Koszul-Like Modules. Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 93-119. http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a8/