Weakly Koszul-Like Modules
Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 93-119

Voir la notice de l'article provenant de la source Math-Net.Ru

The Koszul-like property for any finitely generated graded modules over a Koszul-like algebra is investigated and the notion of weakly Koszul-like module is introduced. We show that a finitely generated graded module $M$ is a weakly Koszul-like module if and only if it can be approximated by Koszul-like graded submodules, which is equivalent to the fact that $\mathbf G(M)$ is a Koszul-like module, where $\mathbf G(M)$ denotes the associated graded module of $M$. As applications, the relationships between the minimal graded projective resolutions of $M$ and $\mathbf G(M)$, and the Koszul-like submodules are established. Moreover, the Koszul dual of a weakly Koszul-like module is proved to be generated in degree $0$ as a graded $E(A)$-module.
Mots-clés : Koszul-like algebras, Koszul-like modules
Keywords: weakly Koszul-like modules, graded algebra, Jacobson radical, Yoneda product, projective resolution, commutative diagram, short exact sequence.
@article{MZM_2012_91_1_a8,
     author = {Pei-Sen Chen and Jia-Feng L\"u},
     title = {Weakly {Koszul-Like} {Modules}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {93--119},
     publisher = {mathdoc},
     volume = {91},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a8/}
}
TY  - JOUR
AU  - Pei-Sen Chen
AU  - Jia-Feng Lü
TI  - Weakly Koszul-Like Modules
JO  - Matematičeskie zametki
PY  - 2012
SP  - 93
EP  - 119
VL  - 91
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a8/
LA  - ru
ID  - MZM_2012_91_1_a8
ER  - 
%0 Journal Article
%A Pei-Sen Chen
%A Jia-Feng Lü
%T Weakly Koszul-Like Modules
%J Matematičeskie zametki
%D 2012
%P 93-119
%V 91
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a8/
%G ru
%F MZM_2012_91_1_a8
Pei-Sen Chen; Jia-Feng Lü. Weakly Koszul-Like Modules. Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 93-119. http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a8/