Some Remarks on the Moment Problem and Its Relation to the Theory of Extrapolation of Spaces
Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 79-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that that the coincidence of integer moments ($n$th-power moments, where $n$ is an integer) of two nonnegative random variables does not imply the coincidence of their distributions. Moreover, we show that, given coinciding integer moments, the ratio of half-integer moments may tend to infinity arbitrarily fast. Also, in this paper, we give a new proof of uniqueness in the continuous moment problem and show that, in that problem, it is impossible to replace the condition of coincidence of all moments by a two-sided inequality between them, while preserving the inequality between the distributions. In conclusion, we study the relationship with the theory of extrapolation of spaces.
Keywords: nonnegative random variable, distribution function, half-integer moment, continuous moment problem, Orlicz space.
Mots-clés : integer moment, extrapolation of spaces, Lebesgue measure
@article{MZM_2012_91_1_a7,
     author = {K. V. Lykov},
     title = {Some {Remarks} on the {Moment} {Problem} and {Its} {Relation} to the {Theory} of {Extrapolation} of {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {79--92},
     publisher = {mathdoc},
     volume = {91},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a7/}
}
TY  - JOUR
AU  - K. V. Lykov
TI  - Some Remarks on the Moment Problem and Its Relation to the Theory of Extrapolation of Spaces
JO  - Matematičeskie zametki
PY  - 2012
SP  - 79
EP  - 92
VL  - 91
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a7/
LA  - ru
ID  - MZM_2012_91_1_a7
ER  - 
%0 Journal Article
%A K. V. Lykov
%T Some Remarks on the Moment Problem and Its Relation to the Theory of Extrapolation of Spaces
%J Matematičeskie zametki
%D 2012
%P 79-92
%V 91
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a7/
%G ru
%F MZM_2012_91_1_a7
K. V. Lykov. Some Remarks on the Moment Problem and Its Relation to the Theory of Extrapolation of Spaces. Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 79-92. http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a7/

[1] I. Stoyanov, Kontrprimery v teorii veroyatnostei, Faktorial, M., 1999 | Zbl

[2] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984 | MR | Zbl

[3] A. N. Shiryaev, Veroyatnost.Kn. 1: Elementarnaya teoriya veroyatnostei. Matematicheskie osnovaniya. Predelnye teoremy, MTsNMO, M., 2004

[4] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961 | MR | Zbl

[5] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl

[6] S. V. Astashkin, K. V. Lykov, “Ekstrapolyatsionnoe opisanie prostranstv Lorentsa i Martsinkevicha, “blizkikh” k $L_\infty$”, Sib. matem. zhurn., 47:5 (2006), 974–992 | MR | Zbl

[7] B. Jawerth, M. Milman, “Extrapolation Theory with Applications”, Mem. Amer. Math. Soc., 89, no. 440, Amer. Math. Soc., Providence, RI, 1991, 82 pp. | MR | Zbl

[8] B. Jawerth, M. Milman, “New results and applications of extrapolation theory”, Interpolation Spaces and Related Topics (Haifa, 1990), Israel Math. Conf. Proc., 5, Bar-Ilan Univ., Ramat Gan, 1992, 81–105 | MR | Zbl

[9] A. Zigmund, Trigonometricheskie ryady, Mir, M., 1965 | MR | Zbl

[10] I. B. Simonenko, “Interpolyatsiya i ekstrapolyatsiya lineinykh operatorov v prostranstvakh Orlicha”, Matem. sb., 63:4 (1964), 536–553 | MR | Zbl

[11] S. Yano, “Notes on Fourier analysis. (XXIX): An extrapolation theorem”, J. Math. Soc. Japan, 3:2 (1951), 296–305 | DOI | MR | Zbl

[12] S. V. Astashkin, K. V. Lykov, “Silno ekstrapolyatsionnye prostranstva i interpolyatsiya”, Sib. matem. zhurn., 50:2 (2009), 250–266 | MR | Zbl