A Construction of Convex Functions
Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 74-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe a construction of convex functions on infinite-dimensional spaces and apply this construction to give an illustration to a theorem of Borwein–Fabian from [1]. Namely, we give a simple explicit example of a continuous convex function on $l_p$, $p\ge 1$, which is everywhere compactly differentiable, but not Fréchet differentiable at zero.
Keywords: topological vector space, normed space, convex function, Fréchet differentiability, Gâteaux differentiability, compact differentiability.
@article{MZM_2012_91_1_a6,
     author = {T. Konderla},
     title = {A {Construction} of {Convex} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {74--78},
     publisher = {mathdoc},
     volume = {91},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a6/}
}
TY  - JOUR
AU  - T. Konderla
TI  - A Construction of Convex Functions
JO  - Matematičeskie zametki
PY  - 2012
SP  - 74
EP  - 78
VL  - 91
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a6/
LA  - ru
ID  - MZM_2012_91_1_a6
ER  - 
%0 Journal Article
%A T. Konderla
%T A Construction of Convex Functions
%J Matematičeskie zametki
%D 2012
%P 74-78
%V 91
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a6/
%G ru
%F MZM_2012_91_1_a6
T. Konderla. A Construction of Convex Functions. Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 74-78. http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a6/

[1] J. M. Borwein, M. Fabián, “On convex functions having points of Gateaux differentiability which are not points of Fréchet differentiability”, Canad. J. Math., 45:6 (1993), 1121–1134 | DOI | MR | Zbl

[2] M. Fabian, P. Habala, V. Montesinos Santalucía, J. Pelant, V. Zizler, Functional Analysis and Infinite-Dimensional Geometry, CMS Books Math., 8, Springer-Verlag, New York, 2001 | MR | Zbl

[3] V. I. Averbukh, O. G. Smolyanov, “Teoriya differentsirovaniya v lineinykh topologicheskikh prostranstvakh”, UMN, 22:6 (1967), 201–260 | MR | Zbl

[4] V. I. Averbukh, O. G. Smolyanov, “Razlichnye opredeleniya proizvodnoi v lineinykh topologicheskikh prostranstvakh”, UMN, 23:4 (1968), 67–116 | MR | Zbl

[5] F. Andreu, J. M. Mazón, “On the compact differentiability in function spaces”, Proc. Roy. Irish Acad. Sect. A, 85:1 (1985), 109–117 | MR | Zbl

[6] V. I. Averbukh, “Gâteaux differentiable convex functions are Michal-Bastiani differentiable”, Convergence Structures and Aplications to Analysis, Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., 1979, no. 4, Akademie-Verlag, Berlin, 1980, 7–9 | MR | Zbl

[7] J. R. Giles, Convex Analysis with Application in the Differetiation of Convex Functions, Res. Notes in Math., 58, Pitman, Boston, MA, 1982 | MR | Zbl