A Construction of Convex Functions
Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 74-78

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe a construction of convex functions on infinite-dimensional spaces and apply this construction to give an illustration to a theorem of Borwein–Fabian from [1]. Namely, we give a simple explicit example of a continuous convex function on $l_p$, $p\ge 1$, which is everywhere compactly differentiable, but not Fréchet differentiable at zero.
Keywords: topological vector space, normed space, convex function, Fréchet differentiability, Gâteaux differentiability, compact differentiability.
@article{MZM_2012_91_1_a6,
     author = {T. Konderla},
     title = {A {Construction} of {Convex} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {74--78},
     publisher = {mathdoc},
     volume = {91},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a6/}
}
TY  - JOUR
AU  - T. Konderla
TI  - A Construction of Convex Functions
JO  - Matematičeskie zametki
PY  - 2012
SP  - 74
EP  - 78
VL  - 91
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a6/
LA  - ru
ID  - MZM_2012_91_1_a6
ER  - 
%0 Journal Article
%A T. Konderla
%T A Construction of Convex Functions
%J Matematičeskie zametki
%D 2012
%P 74-78
%V 91
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a6/
%G ru
%F MZM_2012_91_1_a6
T. Konderla. A Construction of Convex Functions. Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 74-78. http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a6/