Multiplication Formulas for Apostol-Type Polynomials and Multiple Alternating Sums
Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 54-66
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate multiplication formulas for Apostol-type polynomials and introduce $\lambda$-multiple alternating sums, which are evaluated by Apostol-type polynomials. We derive some explicit recursive formulas and deduce some interesting special cases that involve the classical Raabe formulas and some earlier results of Carlitz and Howard.
Keywords:
Apostol-type polynomials, Apostol–Bernoulli numbers and polynomials, Apostol–Euler numbers and polynomials, Apostol–Genocchi numbers and polynomials, multinomial identity, generalized multinomial identity, recursive formula, alternating sum, $\lambda$-multiple alternating sum.
Mots-clés : Raabe's multiplication formula
Mots-clés : Raabe's multiplication formula
@article{MZM_2012_91_1_a4,
author = {Qiu-Ming Luo},
title = {Multiplication {Formulas} for {Apostol-Type} {Polynomials} and {Multiple} {Alternating} {Sums}},
journal = {Matemati\v{c}eskie zametki},
pages = {54--66},
publisher = {mathdoc},
volume = {91},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a4/}
}
Qiu-Ming Luo. Multiplication Formulas for Apostol-Type Polynomials and Multiple Alternating Sums. Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 54-66. http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a4/