Multiplication Formulas for Apostol-Type Polynomials and Multiple Alternating Sums
Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 54-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate multiplication formulas for Apostol-type polynomials and introduce $\lambda$-multiple alternating sums, which are evaluated by Apostol-type polynomials. We derive some explicit recursive formulas and deduce some interesting special cases that involve the classical Raabe formulas and some earlier results of Carlitz and Howard.
Keywords: Apostol-type polynomials, Apostol–Bernoulli numbers and polynomials, Apostol–Euler numbers and polynomials, Apostol–Genocchi numbers and polynomials, multinomial identity, generalized multinomial identity, recursive formula, alternating sum, $\lambda$-multiple alternating sum.
Mots-clés : Raabe's multiplication formula
@article{MZM_2012_91_1_a4,
     author = {Qiu-Ming Luo},
     title = {Multiplication {Formulas} for {Apostol-Type} {Polynomials} and {Multiple} {Alternating} {Sums}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {54--66},
     publisher = {mathdoc},
     volume = {91},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a4/}
}
TY  - JOUR
AU  - Qiu-Ming Luo
TI  - Multiplication Formulas for Apostol-Type Polynomials and Multiple Alternating Sums
JO  - Matematičeskie zametki
PY  - 2012
SP  - 54
EP  - 66
VL  - 91
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a4/
LA  - ru
ID  - MZM_2012_91_1_a4
ER  - 
%0 Journal Article
%A Qiu-Ming Luo
%T Multiplication Formulas for Apostol-Type Polynomials and Multiple Alternating Sums
%J Matematičeskie zametki
%D 2012
%P 54-66
%V 91
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a4/
%G ru
%F MZM_2012_91_1_a4
Qiu-Ming Luo. Multiplication Formulas for Apostol-Type Polynomials and Multiple Alternating Sums. Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 54-66. http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a4/

[1] W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Grundlehren Math. Wiss., 52, Springer-Verlag, New York, 1966 | MR | Zbl

[2] N. E. Nörlund, Vorlesungen über Differenzenrechnung, Grundlehren Math. Wiss., 13, Springer-Verlag, Berlin, 1924 | Zbl

[3] J. Sándor, B. Crstici, Handbook of Number Theory. II, Kluwer Acad. Publ., Dordrecht, 2004 | MR | Zbl

[4] T. M. Apostol, “On the Lerch zeta function”, Pacific J. Math., 1 (1951), 161–167 | MR | Zbl

[5] Q.-M. Luo, “Fourier expansions and integral representations for the Apostol–Bernoulli and Apostol–Euler polynomials”, Math. Comp., 78 (2009), 2193–2208 | DOI | MR | Zbl

[6] Q.-M. Luo, “Fourier expansions and integral representations for the Genocchi polynomials”, J. Integer Seq., 12:1 (2009), Article 09.1.4 | MR | Zbl

[7] Q.-M. Luo, H. M. Srivastava, “Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials”, J. Math. Anal. Appl., 308:1 (2005), 290–302 | DOI | MR | Zbl

[8] Q.-M. Luo, “Apostol–Euler polynomials of higher order and Gaussian hypergeometric functions”, Taiwanese J. Math., 10:4 (2006), 917–925 | MR | Zbl

[9] Q.-M. Luo, H. M. Srivastava, “Some relationships between the Apostol–Bernoulli and Apostol–Euler polynomials”, Comput. Math. Appl., 51:3-4 (2006), 631–642 | DOI | MR | Zbl

[10] Q.-M. Luo, H. M. Srivastava, “Some generalizations of the Apostol–Genocchi polynomials and the Stirling numbers of the second kind”, Appl. Math. Comput., 217:12 (2011), 5702–5728 | DOI | MR | Zbl

[11] Q.-M. Luo, “Extensions of the Genocchi polynomials and its Fourier expansions and integral representations”, Osaka J. Math., 48:2 (2011)

[12] L. Comtet, Advanced Combinatorics. The Art of Finite and Infinite Expansions, Reidel Publ., Dordrecht, 1974 | MR | Zbl

[13] F. T. Howard, “Applications of a recurrence for Bernoulli numbers”, J. Number Theory, 52:1 (1995), 157–172 | DOI | MR | Zbl

[14] L. Carlitz, “The multiplication formulas for the Bernoulli and Euler polynomials”, Math. Mag., 27:2 (1953), 59–64 | DOI | MR | Zbl

[15] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Nat. Bureau Standards Appl. Math. Ser., 55, U.S. Government Printing Office, Washington, 1964 | MR | Zbl