Quasistable Properties of the Solutions of a Multiply Connected System of Differential Equations
Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 136-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem on the asymptotic stability of power type with respect to one part of the phase variables and on the uniform boundedness of the solutions of a multiply connected system of differential equations with respect to the other part of the variables.
Keywords: multiply connected system of differential equations, asymptotic stability, Lyapunov function, Cauchy problem
Mots-clés : Cauchy matrix.
@article{MZM_2012_91_1_a10,
     author = {E. V. Shchennikova},
     title = {Quasistable {Properties} of the {Solutions} of a {Multiply} {Connected} {System} of {Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {136--142},
     publisher = {mathdoc},
     volume = {91},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a10/}
}
TY  - JOUR
AU  - E. V. Shchennikova
TI  - Quasistable Properties of the Solutions of a Multiply Connected System of Differential Equations
JO  - Matematičeskie zametki
PY  - 2012
SP  - 136
EP  - 142
VL  - 91
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a10/
LA  - ru
ID  - MZM_2012_91_1_a10
ER  - 
%0 Journal Article
%A E. V. Shchennikova
%T Quasistable Properties of the Solutions of a Multiply Connected System of Differential Equations
%J Matematičeskie zametki
%D 2012
%P 136-142
%V 91
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a10/
%G ru
%F MZM_2012_91_1_a10
E. V. Shchennikova. Quasistable Properties of the Solutions of a Multiply Connected System of Differential Equations. Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 136-142. http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a10/

[1] V. I. Vorotnikov, “Ob ustoichivosti i ustoichivosti po chasti peremennykh “chastichnykh” polozhenii ravnovesiya nelineinykh dinamicheskikh sistem”, Dokl. RAN, 389:3 (2003), 332–337 | MR

[2] S. A. Alekseeva, V. I. Vorotnikov, V. A. Feofanova, “K zadacham chastichnoi ekviasimptoticheskoi ustoichivosti nelineinykh dinamicheskikh sistem”, Avtomat. i telemekh., 2005, no. 2, 3–16 | MR | Zbl

[3] N. N. Krasovskii, Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR | Zbl

[4] V. I. Zubov, Ustoichivost dvizheniya. Metody Lyapunova i ikh primenenie, Vysshaya shkola, M., 1973 | MR | Zbl

[5] A. A. Shestakov, “O stepennoi asimptotike neavtonomnoi odnorodnoi i kvaziodnorodnoi sistemy”, Differents. uravneniya, 11:8 (1975), 1427–1436 | MR | Zbl

[6] E. A. Barbashin, Funktsii Lyapunova, Nauka, M., 1970 | MR | Zbl

[7] Metod vektornykh funktsii Lyapunova v teorii ustoichivosti dvizheniya, red. A. A. Voronov, V. M. Matrosov, Nauka, M., 1987 | MR | Zbl

[8] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR | Zbl

[9] O. Perron, “Die Stabilitätsfrage bei Differentialgleichungen”, Math. Z., 32:1 (1930), 703–728 | MR | Zbl