Automorphisms of the Semigroup of Nonnegative Invertible Matrices of Order Two over Partially Ordered Commutative Rings
Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 3-11
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper, the automorphisms of the semigroup of nonnegative invertible matrices of order two over a partially ordered commutative ring with $2$ invertible are described.
Keywords:
associative (commutative) ring with unit, nonnegative invertible matrix of order two, partially ordered commutative ring, subsemigroup, central homomorphism of semigroups, idempotent.
@article{MZM_2012_91_1_a0,
author = {E. I. Bunina},
title = {Automorphisms of the {Semigroup} of {Nonnegative} {Invertible} {Matrices} of {Order} {Two} over {Partially} {Ordered} {Commutative} {Rings}},
journal = {Matemati\v{c}eskie zametki},
pages = {3--11},
year = {2012},
volume = {91},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a0/}
}
TY - JOUR AU - E. I. Bunina TI - Automorphisms of the Semigroup of Nonnegative Invertible Matrices of Order Two over Partially Ordered Commutative Rings JO - Matematičeskie zametki PY - 2012 SP - 3 EP - 11 VL - 91 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a0/ LA - ru ID - MZM_2012_91_1_a0 ER -
E. I. Bunina. Automorphisms of the Semigroup of Nonnegative Invertible Matrices of Order Two over Partially Ordered Commutative Rings. Matematičeskie zametki, Tome 91 (2012) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/MZM_2012_91_1_a0/
[1] A. V. Mikhalëv, M. A. Shatalova, “Avtomorfizmy i antiavtomorfizmy, polugruppy obratimykh matrits s neotritsatelnymi elementami”, Matem. sb., 81:4 (1970), 600–609 | MR | Zbl
[2] E. I. Bunina, A. V. Mikhalëv, “Avtomorfizmy polugruppy obratimykh matrits s neotritsatelnymi elementami”, Fundament. i prikl. matem., 11:2 (2005), 3–23 | MR | Zbl
[3] E. I. Bunina, P. P. Semënov, “Avtomorfizmy polugruppy obratimykh matrits s neotritsatelnymi elementami nad kommutativnymi chastichno uporyadochennymi koltsami”, Fundament. i prikl. matem., 14:2 (2008), 69–100 | MR | Zbl