On the Spectral Stability of Functional-Differential Equations
Matematičeskie zametki, Tome 90 (2011) no. 6, pp. 885-901

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary value problem for an elliptic functional-differential equation with contraction and dilatation of the arguments of the desired function in the leading part is considered in a star-shaped bounded domain. Estimates for the modification of eigenvalues of the operator of the problem under internal deformations of the domain are obtained.
Keywords: elliptic functional-differential equation, boundary value problem, star-shaped domain, Sobolev space, sesquilinear form, Hilbert–Schmidt theorem, Riesz theorem, Hermitian form, Banach algebra.
Mots-clés : contraction and dilatation, internal perturbation of a domain
@article{MZM_2011_90_6_a6,
     author = {L. E. Rossovskii},
     title = {On the {Spectral} {Stability} of {Functional-Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {885--901},
     publisher = {mathdoc},
     volume = {90},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a6/}
}
TY  - JOUR
AU  - L. E. Rossovskii
TI  - On the Spectral Stability of Functional-Differential Equations
JO  - Matematičeskie zametki
PY  - 2011
SP  - 885
EP  - 901
VL  - 90
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a6/
LA  - ru
ID  - MZM_2011_90_6_a6
ER  - 
%0 Journal Article
%A L. E. Rossovskii
%T On the Spectral Stability of Functional-Differential Equations
%J Matematičeskie zametki
%D 2011
%P 885-901
%V 90
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a6/
%G ru
%F MZM_2011_90_6_a6
L. E. Rossovskii. On the Spectral Stability of Functional-Differential Equations. Matematičeskie zametki, Tome 90 (2011) no. 6, pp. 885-901. http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a6/