On the Spectral Stability of Functional-Differential Equations
Matematičeskie zametki, Tome 90 (2011) no. 6, pp. 885-901.

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary value problem for an elliptic functional-differential equation with contraction and dilatation of the arguments of the desired function in the leading part is considered in a star-shaped bounded domain. Estimates for the modification of eigenvalues of the operator of the problem under internal deformations of the domain are obtained.
Keywords: elliptic functional-differential equation, boundary value problem, star-shaped domain, Sobolev space, sesquilinear form, Hilbert–Schmidt theorem, Riesz theorem, Hermitian form, Banach algebra.
Mots-clés : contraction and dilatation, internal perturbation of a domain
@article{MZM_2011_90_6_a6,
     author = {L. E. Rossovskii},
     title = {On the {Spectral} {Stability} of {Functional-Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {885--901},
     publisher = {mathdoc},
     volume = {90},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a6/}
}
TY  - JOUR
AU  - L. E. Rossovskii
TI  - On the Spectral Stability of Functional-Differential Equations
JO  - Matematičeskie zametki
PY  - 2011
SP  - 885
EP  - 901
VL  - 90
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a6/
LA  - ru
ID  - MZM_2011_90_6_a6
ER  - 
%0 Journal Article
%A L. E. Rossovskii
%T On the Spectral Stability of Functional-Differential Equations
%J Matematičeskie zametki
%D 2011
%P 885-901
%V 90
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a6/
%G ru
%F MZM_2011_90_6_a6
L. E. Rossovskii. On the Spectral Stability of Functional-Differential Equations. Matematičeskie zametki, Tome 90 (2011) no. 6, pp. 885-901. http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a6/

[1] A. L. Skubachevskii, Elliptic Functional-Differential Equations and Applications, Oper. Theory Adv. Appl., 91, Birkhäuser Verlag, Basel, 1997 | MR | Zbl

[2] L. E. Rossovskii, A. L. Skubachevskii, “Razreshimost i regulyarnost reshenii nekotorykh klassov ellipticheskikh funktsionalno-differentsialnykh uravnenii”, Trudy mezhdunarodnoi konferentsii, posvyaschennoi 90-letiyu so dnya rozhdeniya L. S. Pontryagina. T. 5. Differentsialnye uravneniya (Moskva, 31 avgusta – 6 sentyabrya 1998 g.), Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 66, VINITI, M., 1999, 114–192 | MR | Zbl

[3] L. E. Rossovskii, “Kraevye zadachi dlya ellipticheskikh funktsionalno-differentsialnykh uravnenii s rastyazheniem i szhatiem argumentov”, Tr. MMO, 62, Izd-vo Mosk. un-ta, M., 2001, 199–228 | MR | Zbl

[4] V. V. Pod'yapolskii, A. L. Skubachevskii, “O polnote i bazisnosti sistemy kornevykh funktsii silno ellipticheskikh funktsionalno-differentsialnykh operatorov”, UMN, 51:6 (1996), 219–220 | MR | Zbl

[5] V. V. Pod'yapolskii, A. L. Skubachevskii, “Spektralnaya asimptotika silno ellipticheskikh differentsialno-raznostnykh operatorov”, Differents. uravneniya, 35:6 (1999), 793–800 | MR | Zbl

[6] I. Babuška, R. Výborný, “Continuous dependence of the eigenvalues on the domain”, Czechoslovak Math. J., 15 (1965), 169–178 | MR | Zbl

[7] E. B. Davies, “Eigenvalue stability bounds via weighted Sobolev spaces”, Math. Z., 214:3 (1993), 357–371 | DOI | MR | Zbl

[8] V. I. Burenkov, E. B. Davies, “Spectral stability of the Neumann Laplacian”, J. Differential Equations, 186:2 (2002), 485–508 | DOI | MR | Zbl

[9] P. D. Lamberti, M. Lanza de Cristoforis, “A global Lipschitz continuity result for a domain dependent Dirichlet eigenvalue problem for the Laplace operator”, Z. Anal. Anwendungen, 24:2 (2005), 277–304 | DOI | MR | Zbl

[10] J. K. Hale, “Eigenvalues and perturbed domains”, Ten Mathematical Essays on Approximation in Analysis and Topology, Elsevier B. V., Amsterdam, 2005, 95–123 | MR | Zbl

[11] R. Kurant, D. Gilbert, Metody matematicheskoi fiziki, T. 1, Gostekhizdat, M., 1951 | MR | Zbl

[12] V. I. Burenkov, P. D. Lamberti, “Spectral stability of general non-negative self-adjoint operators with applications to Neumann-type operators”, J. Differential Equations, 233:2 (2007), 345–379 | DOI | MR | Zbl

[13] E. B. Davies, Spectral Theory and Differential Operators, Cambridge Stud. Adv. Math., 42, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[14] F. Riss, B. Sekefalvi-Nad, Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR | Zbl

[15] L. E. Rossovskii, “Koertsitivnost funktsionalno-differentsialnykh uravnenii”, Matem. zametki, 59:1 (1996), 103–113 | MR | Zbl

[16] L. V. Borodulina, L. E. Rossovskii, “Razreshimost ellipticheskikh funktsionalno-differentsialnykh uravnenii so szhatiem argumentov v vesovykh prostranstvakh”, Tr. sem. im. I. G. Petrovskogo, 26, Izd-vo Mosk. un-ta, M., 2007, 37–55

[17] V. I. Burenkov, Sobolev Spaces on Domains, Teubner-Texte Math., 137, B. G. Teubner, Stuttgart, 1998 | MR | Zbl

[18] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR | Zbl

[19] N. Danford, Dzh. Shvarts, Lineinye operatory. T. 2. Spektralnaya teoriya, IL, M., 1966 | MR | Zbl