Limit Distributions for the Number of Particles in Branching Random Walks
Matematičeskie zametki, Tome 90 (2011) no. 6, pp. 845-859.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study branching random walks with continuous time. Particles performing a random walk on $\mathbb{Z}^{2}$, are allowed to be born and die only at the origin. It is assumed that the offspring reproduction law at the branching source is critical and the random walk outside the source is homogeneous and symmetric. Given particles at the origin, we prove a conditional limit theorem for the joint distribution of suitably normalized numbers of particles at the source and outside it as time unboundedly increases. As a consequence, we establish the asymptotic independence of such random variables.
Keywords: branching random walk, branching source, offspring reproduction law, Bellman–Harris branching process, probability generating function
Mots-clés : transition rate matrix.
@article{MZM_2011_90_6_a3,
     author = {E. Vl. Bulinskaya},
     title = {Limit {Distributions} for the {Number} of {Particles} in {Branching} {Random} {Walks}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {845--859},
     publisher = {mathdoc},
     volume = {90},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a3/}
}
TY  - JOUR
AU  - E. Vl. Bulinskaya
TI  - Limit Distributions for the Number of Particles in Branching Random Walks
JO  - Matematičeskie zametki
PY  - 2011
SP  - 845
EP  - 859
VL  - 90
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a3/
LA  - ru
ID  - MZM_2011_90_6_a3
ER  - 
%0 Journal Article
%A E. Vl. Bulinskaya
%T Limit Distributions for the Number of Particles in Branching Random Walks
%J Matematičeskie zametki
%D 2011
%P 845-859
%V 90
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a3/
%G ru
%F MZM_2011_90_6_a3
E. Vl. Bulinskaya. Limit Distributions for the Number of Particles in Branching Random Walks. Matematičeskie zametki, Tome 90 (2011) no. 6, pp. 845-859. http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a3/

[1] E. V. Zakhareva, “O veroyatnostyakh vyzhivaniya chastits na $\mathbb{Z}^{2}$ v odnoi iz modelei kriticheskogo vetvyaschegosya sluchainogo bluzhdaniya”, Trudy VI mezhdunarodnykh Kolmogorovskikh chtenii (Yaroslavl, 19–22 maya 2008 g.), Izd-vo YaGPU, Yaroslavl, 2008, 218–229

[2] E. Vl. Bulinskaya, “Kataliticheskoe vetvyascheesya sluchainoe bluzhdanie po dvumernoi reshetke”, TVP, 55:1 (2010), 142–148 | MR | Zbl

[3] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izd-vo mekh.-matem. fak-ta MGU, M., 2007

[4] V. A. Vatutin, V. A. Topchii, “Predelnaya teorema dlya kriticheskikh kataliticheskikh vetvyaschikhsya sluchainykh bluzhdanii”, TVP, 49:3 (2004), 461–484 | MR | Zbl

[5] S. Albeverio, L. V. Bogachev, E. B. Yarovaya, “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. R. Acad. Sci. Paris Sér. I Math., 326:8 (1998), 975–980 | MR | Zbl

[6] S. Albeverio, L. V. Bogachev, “Branching random walk in a catalytic medium. I. Basic equations”, Positivity, 4:1 (2000), 41–100 | DOI | MR | Zbl

[7] E. B. Yarovaya, “Kriticheskie vetvyaschiesya sluchainye bluzhdaniya po reshetkam nizkikh razmernostei”, Diskret. matem., 21:1 (2009), 117–138 | MR

[8] V. A. Vatutin, V. A. Topchiĭ, E. B. Yarovaya, “Catalytic branching random walk and queueing systems with random number of independent servers”, Theor. Probability and Math. Statist., 69 (2004), 1–15 | MR | Zbl

[9] V. Topchii, V. Vatutin, “Individuals at the origin in the critical catalytic branching random walk”, Discrete Random Walks (Paris, 2003), Discrete Math. Theor. Comput. Sci. Proc., AC, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2003, 325–332 | MR | Zbl

[10] B. A. Sevastyanov, Vetvyaschiesya protsessy, Nauka, M., 1971 | MR | Zbl

[11] E. B. Yarovaya, “Monotonnost veroyatnosti vozvrascheniya v istochnik v modelyakh vetvyaschikhsya sluchainykh bluzhdanii”, Vestn. Mosk. un-ta. Cer. 1. Matem., mekh., 2010, no. 2, 44–47 | MR

[12] V. A. Vatutin, “Kriticheskie vetvyaschiesya protsessy Bellmana–Kharrisa, nachinayuschiesya s bolshogo chisla chastits”, Matem. zametki, 40:4 (1986), 527–541 | MR | Zbl