Asymptotics of the Spectrum of Nonsmooth Perturbations of Differential Operators of Order $2m$
Matematičeskie zametki, Tome 90 (2011) no. 6, pp. 833-844.

Voir la notice de l'article provenant de la source Math-Net.Ru

On a finite closed interval, we obtain the asymptotics of the eigenvalues of a differential operator of order $2m$ perturbed by a differential operator of order $2m-2$ given by a quasidifferential expression. We also consider the case of multiple eigenvalues.
Keywords: perturbation of a differential operator, quasidifferential expression, Hilbert space, Dirichlet boundary conditions, resolvent of an operator.
Mots-clés : spectrum of perturbations
@article{MZM_2011_90_6_a2,
     author = {\`E. F. Akhmerova},
     title = {Asymptotics of the {Spectrum} of {Nonsmooth} {Perturbations} of {Differential} {Operators} of {Order} $2m$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {833--844},
     publisher = {mathdoc},
     volume = {90},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a2/}
}
TY  - JOUR
AU  - È. F. Akhmerova
TI  - Asymptotics of the Spectrum of Nonsmooth Perturbations of Differential Operators of Order $2m$
JO  - Matematičeskie zametki
PY  - 2011
SP  - 833
EP  - 844
VL  - 90
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a2/
LA  - ru
ID  - MZM_2011_90_6_a2
ER  - 
%0 Journal Article
%A È. F. Akhmerova
%T Asymptotics of the Spectrum of Nonsmooth Perturbations of Differential Operators of Order $2m$
%J Matematičeskie zametki
%D 2011
%P 833-844
%V 90
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a2/
%G ru
%F MZM_2011_90_6_a2
È. F. Akhmerova. Asymptotics of the Spectrum of Nonsmooth Perturbations of Differential Operators of Order $2m$. Matematičeskie zametki, Tome 90 (2011) no. 6, pp. 833-844. http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a2/

[1] E. F. Akhmerova, Kh. Kh. Murtazin, “Spektralnaya asimptotika dlya negladkikh vozmuschenii differentsialnykh operatorov i formuly sledov”, Dokl. RAN, 388:6 (2003), 731–733 | MR | Zbl

[2] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | MR | Zbl

[3] A. M. Savchuk, A. A. Shkalikov, “Formula sleda dlya operatorov Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 69:3 (2001), 427–442 | MR | Zbl

[4] A. M. Savchuk, A. A. Shkalikov, “O sobstvennykh znacheniyakh operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva”, Matem. zametki, 80:6 (2006), 864–884 | MR | Zbl

[5] V. A. Vinokurov, V. A. Sadovnichii, “Sobstvennye znacheniya i sled operatora Shturma–Liuvillya kak differentsiruemye funktsii summiruemogo potentsiala”, Dokl. RAN, 365:3 (1999), 295–297 | MR | Zbl

[6] V. A. Vinokurov, V. A. Sadovnichii, “Asimptotika sobstvennykh znachenii i sobstvennykh funktsii i formula sleda dlya potentsiala, soderzhaschego $\delta$-funktsii”, Dokl. RAN, 376:4 (2001), 445–448 | MR | Zbl

[7] V. A. Sadovnichii, V. E. Podolskii, “Sledy operatorov s otnositelno kompaktnym vozmuscheniem”, Matem. sb., 193:2 (2002), 129–152 | MR | Zbl

[8] E. F. Akhmerova, “Asimptotika spektra dlya negladkikh vozmuschenii differentsialnykh operatorov $2n$-go poryadka”, Vestn. Bashkirsk. un-ta, 1 (2005), 28–32

[9] Kh. Kh. Murtazin, V. A. Sadovnichii, R. Z. Tulkubaev, “Asimptotika spektra i formuly sledov dlya differentsialnykh operatorov s neogranichennymi koeffitsientami”, Differents. uravneniya, 44:12 (2008), 1628–1637 | MR | Zbl

[10] E. F. Akhmerova, “Asimptotika spektra garmonicheskogo ostsillyatora, vozmuschennogo negladkim potentsialom”, Izv. vuzov. Matem., 2007, no. 11, 71–74 | MR

[11] E. F. Akhmerova, “Asimptotika spektra negladkikh vozmuschenii garmonicheskogo ostsillyatora”, Sib. matem. zhurn., 49:6 (2008), 1216–1234 | MR