Stability Analysis Based on Nonlinear Inhomogeneous Approximation
Matematičeskie zametki, Tome 90 (2011) no. 6, pp. 803-820.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic stability of zero solutions for essentially nonlinear systems of differential equations in triangular inhomogeneous approximation is studied. Conditions under which perturbations do not affect the asymptotic stability of the zero solution are determined by using the direct Lyapunov method. Stability criteria are stated in the form of inequalities between perturbation orders and the orders of homogeneity of functions involved in the nonlinear approximation system under consideration.
Keywords: asymptotic stability, Lyapunov function, nonlinear approximation, cascade system, homogeneous function.
@article{MZM_2011_90_6_a0,
     author = {A. Yu. Aleksandrov and A. V. Platonov},
     title = {Stability {Analysis} {Based} on {Nonlinear} {Inhomogeneous} {Approximation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--820},
     publisher = {mathdoc},
     volume = {90},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a0/}
}
TY  - JOUR
AU  - A. Yu. Aleksandrov
AU  - A. V. Platonov
TI  - Stability Analysis Based on Nonlinear Inhomogeneous Approximation
JO  - Matematičeskie zametki
PY  - 2011
SP  - 803
EP  - 820
VL  - 90
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a0/
LA  - ru
ID  - MZM_2011_90_6_a0
ER  - 
%0 Journal Article
%A A. Yu. Aleksandrov
%A A. V. Platonov
%T Stability Analysis Based on Nonlinear Inhomogeneous Approximation
%J Matematičeskie zametki
%D 2011
%P 803-820
%V 90
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a0/
%G ru
%F MZM_2011_90_6_a0
A. Yu. Aleksandrov; A. V. Platonov. Stability Analysis Based on Nonlinear Inhomogeneous Approximation. Matematičeskie zametki, Tome 90 (2011) no. 6, pp. 803-820. http://geodesic.mathdoc.fr/item/MZM_2011_90_6_a0/

[1] N. N. Krasovskii, Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR | Zbl

[2] A. M. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, ONTI, M., 1935

[3] I. G. Malkin, “Teorema ob ustoichivosti po pervomu priblizheniyu”, Dokl. AN SSSR, 76:6 (1951), 783–784 | MR | Zbl

[4] V. I. Zubov, Ustoichivost dvizheniya. Metody Lyapunova i ikh primenenie, Vysshaya shkola, M., 1973 | MR | Zbl

[5] G. V. Kamenkov, Izbrannye trudy, v. 1, Ustoichivost dvizheniya. Kolebaniya. Aerodinamika, Nauka, M., 1971 | MR | Zbl

[6] V. I. Zubov, Matematicheskie metody issledovaniya sistem avtomaticheskogo regulirovaniya, Sudpromgiz, L., 1959 | MR

[7] V. V. Kozlov, “Tenzornye invarianty kvaziodnorodnykh sistem differentsialnykh uravnenii i asimptoticheskii metod Kovalevskoi–Lyapunova”, Matem. zametki, 51:2 (1992), 46–52 | MR | Zbl

[8] V. G. Veretennikov, Ustoichivost i kolebaniya nelineinykh sistem, Nauka, M., 1984 | MR | Zbl

[9] G. G. Khazina, L. G. Khazin, “Suschestvenno neodnorodnye sistemy v zadachakh ustoichivosti”, Ustoichivost dvizheniya, eds. V. M. Matrosova, V. D. Irtegova, Nauka, Novosibirsk, 1985, 187–191

[10] V. I. Zubov, “Asimptoticheskaya ustoichivost po pervomu, v shirokom smysle, priblizheniyu”, Dokl. RAN, 346:3 (1996), 295–296 | MR | Zbl

[11] A. A. Kosov, “Ob ustoichivosti slozhnykh sistem po nelineinomu priblizheniyu”, Differents. uravneniya, 33:10 (1997), 1432–1434 | MR | Zbl

[12] V. V. Abramov, “Ustoichivost trivialnogo resheniya sistemy differentsialnykh uravnenii s nulevym lineinym priblizheniem”, Differents. uravneniya, 35:11 (1999), 1575 | Zbl

[13] A. Yu. Aleksandrov, Ustoichivost dvizhenii neavtonomnykh dinamicheskikh sistem, Izd-vo S.-Peterb. un-ta, SPb., 2004

[14] A. Yu. Aleksandrov, A. V. Platonov, “Aggregation and stability analysis of nonlinear complex systems”, J. Math. Anal. Appl., 342:2 (2008), 989–1002 | DOI | MR | Zbl

[15] A. A. Martynyuk, A. Yu. Obolenskii, “Ob ustoichivosti avtonomnykh sistem Vazhevskogo”, Differents. uravneniya, 16:8 (1980), 1392–1407 | MR | Zbl

[16] B. S. Kalitin, “O printsipe svedeniya dlya asimptoticheski treugolnykh differentsialnykh sistem”, Prikl. matem., mekh., 71:3 (2007), 389–400 | MR | Zbl

[17] P. Seibert, R. Suárez, “Global stabilization of nonlinear cascaded systems”, Systems Control Lett., 14:4 (1990), 347–352 | DOI | MR | Zbl

[18] P. Seibert, “Printsip svedeniya v teorii ustoichivosti dinamicheskikh i poludinamicheskikh sistem”, Matem. zametki, 56:3 (1994), 134–143 | MR | Zbl

[19] E. Panteley, A. Loría, “Growth rate conditions for stability of cascaded time-varying systems”, Automatica J. IFAC, 37:3 (2001), 453–460 | DOI | MR | Zbl

[20] S. A. Alekseeva, V. I. Vorotnikov, V. A. Feofanova, “K problemam chastichnoi ustoichivosti i detektiruemosti dinamicheskikh sistem”, Prikl. matem., mekh., 71:6 (2007), 964–975 | MR | Zbl

[21] A. I. Lure, Analiticheskaya mekhanika, Fizmatgiz, M., 1961 | MR | Zbl

[22] A. Yu. Aleksandrov, “Ob ustoichivosti reshenii nelineinykh sistem s neogranichennymi vozmuscheniyami”, Matem. zametki, 63:1 (1998), 3–8 | MR | Zbl

[23] R. Rokafellar, Vypuklyi analiz, Mir, M., 1973 | MR | Zbl