Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_90_5_a8, author = {P. V. Snurnitsyn}, title = {On the {Basic} {Properties} of the {Ramanujan} $\tau${-Function}}, journal = {Matemati\v{c}eskie zametki}, pages = {736--743}, publisher = {mathdoc}, volume = {90}, number = {5}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a8/} }
P. V. Snurnitsyn. On the Basic Properties of the Ramanujan $\tau$-Function. Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 736-743. http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a8/
[1] S. Ramanujan, “On certain arithmetical functions”, Trans. Cambridge Philos. Soc., 22:9 (1916), 159–184 | MR
[2] H. Iwaniec, Topics in Classical Automorphic Forms, Grad. Stud. Math., 17, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[3] I. E. Shparlinski, “On the value set of the Ramanujan function”, Arch. Math. (Basel), 85:6 (2005), 508–513 | DOI | MR | Zbl
[4] M. Z. Garaev, V. S. Garsia, S. V. Konyagin, “Problema Varinga s $\tau$-funktsiei Ramanudzhana”, Izv. RAN. Ser. matem., 72:1 (2008), 39–50 | MR | Zbl
[5] M. Z. Garaev, V. C. Garcia, S. V. Konyagin, “The Waring problem with the Ramanujan $\tau$-function. II”, Canad. Math. Bull., 52:2 (2009), 195–199 | DOI | MR | Zbl
[6] I. M. Vinogradov, Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1971 | MR | Zbl
[7] Khua Lo-Ken, “Additivnaya teoriya prostykh chisel”, Tr. Matem. in-ta im. V. A. Steklova, 22, Izd-vo AN SSSR, M.–L., 1947, 3–179 | MR | Zbl