On the Basic Properties of the Ramanujan $\tau$-Function
Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 736-743.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the values of the Ramanujan function constitute an additive basis for the set of integers of order 8012.
Keywords: Ramanujan function, set of integers, additive basis, natural number.
@article{MZM_2011_90_5_a8,
     author = {P. V. Snurnitsyn},
     title = {On the {Basic} {Properties} of the {Ramanujan} $\tau${-Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {736--743},
     publisher = {mathdoc},
     volume = {90},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a8/}
}
TY  - JOUR
AU  - P. V. Snurnitsyn
TI  - On the Basic Properties of the Ramanujan $\tau$-Function
JO  - Matematičeskie zametki
PY  - 2011
SP  - 736
EP  - 743
VL  - 90
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a8/
LA  - ru
ID  - MZM_2011_90_5_a8
ER  - 
%0 Journal Article
%A P. V. Snurnitsyn
%T On the Basic Properties of the Ramanujan $\tau$-Function
%J Matematičeskie zametki
%D 2011
%P 736-743
%V 90
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a8/
%G ru
%F MZM_2011_90_5_a8
P. V. Snurnitsyn. On the Basic Properties of the Ramanujan $\tau$-Function. Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 736-743. http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a8/

[1] S. Ramanujan, “On certain arithmetical functions”, Trans. Cambridge Philos. Soc., 22:9 (1916), 159–184 | MR

[2] H. Iwaniec, Topics in Classical Automorphic Forms, Grad. Stud. Math., 17, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[3] I. E. Shparlinski, “On the value set of the Ramanujan function”, Arch. Math. (Basel), 85:6 (2005), 508–513 | DOI | MR | Zbl

[4] M. Z. Garaev, V. S. Garsia, S. V. Konyagin, “Problema Varinga s $\tau$-funktsiei Ramanudzhana”, Izv. RAN. Ser. matem., 72:1 (2008), 39–50 | MR | Zbl

[5] M. Z. Garaev, V. C. Garcia, S. V. Konyagin, “The Waring problem with the Ramanujan $\tau$-function. II”, Canad. Math. Bull., 52:2 (2009), 195–199 | DOI | MR | Zbl

[6] I. M. Vinogradov, Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1971 | MR | Zbl

[7] Khua Lo-Ken, “Additivnaya teoriya prostykh chisel”, Tr. Matem. in-ta im. V. A. Steklova, 22, Izd-vo AN SSSR, M.–L., 1947, 3–179 | MR | Zbl