On the Index of Nonlocal Elliptic Operators Corresponding to a Nonisometric Diffeomorphism
Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 712-726.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider nonlocal elliptic operators corresponding to diffeomorphisms of smooth closed manifolds. The index of such operators is calculated. More precisely, it was shown that the index of the operator is equal to that of the elliptic boundary-value problem on the cylinder whose base is the original manifold. As an example, we study nonlocal operators on the two-dimensional Riemannian manifold corresponding to the Euler tangent operator.
Keywords: nonlocal elliptic operator, index of an elliptic operator, Riemannian manifold, elliptic boundary-value problem, diffeomorphism, Euler tangent operator, ellipticity condition, Fredholm property.
@article{MZM_2011_90_5_a6,
     author = {A. Yu. Savin},
     title = {On the {Index} of {Nonlocal} {Elliptic} {Operators} {Corresponding} to a {Nonisometric} {Diffeomorphism}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {712--726},
     publisher = {mathdoc},
     volume = {90},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a6/}
}
TY  - JOUR
AU  - A. Yu. Savin
TI  - On the Index of Nonlocal Elliptic Operators Corresponding to a Nonisometric Diffeomorphism
JO  - Matematičeskie zametki
PY  - 2011
SP  - 712
EP  - 726
VL  - 90
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a6/
LA  - ru
ID  - MZM_2011_90_5_a6
ER  - 
%0 Journal Article
%A A. Yu. Savin
%T On the Index of Nonlocal Elliptic Operators Corresponding to a Nonisometric Diffeomorphism
%J Matematičeskie zametki
%D 2011
%P 712-726
%V 90
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a6/
%G ru
%F MZM_2011_90_5_a6
A. Yu. Savin. On the Index of Nonlocal Elliptic Operators Corresponding to a Nonisometric Diffeomorphism. Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 712-726. http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a6/

[1] A. B. Antonevich, “Ellipticheskie psevdodifferentsialnye operatory s konechnoi gruppoi sdvigov”, Izv. AN SSSR. Ser. matem., 37:3 (1973), 663–675 | MR | Zbl

[2] V. E. Nazaikinskii, A. Yu. Savin, B. Yu. Sternin, Elliptic Theory and Noncommutative Geometry. Nonlocal Elliptic Operators, Oper. Theory Adv. Appl., 183, Advances in Partial Differential Equations, Birkhäuser Verlag, Basel, 2008 | MR | Zbl

[3] A. Antonevich, M. Belousov, A. Lebedev, Functional Differential Equations. II. $C^*$-Applications, Part 1. Equations with Continuous Coefficients, Pitman Monogr. Surveys Pure Appl. Math., 94, Longman, Harlow, 1998 | MR | Zbl

[4] A. Yu. Savin, B. Yu. Sternin, “Nelokalnye ellipticheskie operatory dlya gruppy rastyazhenii”, Dokl. RAN, 433:1 (2010), 21–24 | Zbl

[5] A. Yu. Savin, B. Yu. Sternin, “Ob indekse ellipticheskikh operatorov dlya gruppy rastyazhenii”, Matem. sb., 202:10 (2011), 99–130

[6] A. Yu. Savin, B. Yu. Sternin, “Defekt indeksa v teorii nelokalnykh zadach i $\eta$-invariant”, Matem. sb., 195:9 (2004), 85–126 | MR | Zbl

[7] A. Yu. Savin, B. Yu. Sternin, “Indeks dlya odnogo klassa nelokalnykh ellipticheskikh operatorov”, Spektralnye i evolyutsionnye zadachi, Materialy XIV Krymskoi osennei matematicheskoi shkoly-simpoziuma, v. 14, TNU, Simferopol, 2004, 35–41

[8] A. Antonevich, A. Lebedev, Functional-Differential Equations. I. $C^*$-Theory, Pitman Monogr. Surveys Pure Appl. Math., 70, Longman Sci. Tech., Harlow, 1994 | MR | Zbl

[9] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 3, Psevdodifferentsialnye operatory, Mir, M., 1987 | MR | Zbl

[10] M. S. Agranovich, A. S. Dynin, “Obschie kraevye zadachi dlya ellipticheskikh sistem v mnogomernoi oblasti”, Dokl. AN SSSR, 146:3 (1962), 511–514 | MR | Zbl

[11] D. P. Williams, Crossed Products of $C^*$-algebras, Math. Surveys Monogr., 134, Amer. Math. Soc., Providence, RI, 2007 | MR | Zbl

[12] S. Rempel, B.-W. Schulze, Index Theory of Elliptic Boundary Problems, Akademie-Verlag, Berlin, 1982 | MR | Zbl

[13] M. F. Atiyah, V. K. Patodi, I. M. Singer, “Spectral asymmetry and Riemannian geometry. I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl

[14] A. Yu. Savin, B. Yu. Sternin, “Ellipticheskie operatory v chetnykh podprostranstvakh”, Matem. sb., 190:8 (1999), 125–160 | MR | Zbl

[15] M. F. Atiyah, V. K. Patodi, I. M. Singer, “Spectral asymmetry and Riemannian geometry. III”, Math. Proc. Cambridge Philos. Soc., 79:1 (1976), 71–99 | DOI | MR | Zbl