On Probability Analogs of Rosenthal's Inequality
Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 665-671.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain probability combinatorial inequalities for independent random variables, strengthening the well-known Rosenthal inequality. As a corollary, we prove that the generalized Rosenthal inequality for identically distributed independent functions remains valid in the case of quasinormed symmetric spaces.
Keywords: Rosenthal inequality, independent random variables, quasinormed symmetric space, bistochastic matrix, Paley–Zygmund inequality.
@article{MZM_2011_90_5_a2,
     author = {S. V. Astashkin and K. E. Tikhomirov},
     title = {On {Probability} {Analogs} of {Rosenthal's} {Inequality}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {665--671},
     publisher = {mathdoc},
     volume = {90},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a2/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - K. E. Tikhomirov
TI  - On Probability Analogs of Rosenthal's Inequality
JO  - Matematičeskie zametki
PY  - 2011
SP  - 665
EP  - 671
VL  - 90
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a2/
LA  - ru
ID  - MZM_2011_90_5_a2
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A K. E. Tikhomirov
%T On Probability Analogs of Rosenthal's Inequality
%J Matematičeskie zametki
%D 2011
%P 665-671
%V 90
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a2/
%G ru
%F MZM_2011_90_5_a2
S. V. Astashkin; K. E. Tikhomirov. On Probability Analogs of Rosenthal's Inequality. Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 665-671. http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a2/

[1] W. B. Johnson, G. Schechtman, “Sums of independent random variables in rearrangement invariant function spaces”, Ann. Probab., 17:2 (1989), 789–808 | DOI | MR | Zbl

[2] H. P. Rosenthal, “On the subspaces of $L_p$ $(p>2)$ spanned by sequences of independent random variables”, Israel J. Math., 8:3 (1970), 273–303 | DOI | MR | Zbl

[3] S. V. Astashkin, F. A. Sukochev, “Series of independent random variables in rearrangement invariant spaces: an operator approach”, Israel J. Math., 145:1 (2005), 125–156 | DOI | MR | Zbl

[4] S. V. Astashkin, F. A. Sukochev, “Sravnenie summ nezavisimykh i diz'yunktnykh funktsii v simmetrichnykh prostranstvakh”, Matem. zametki, 76:4 (2004), 483–489 | MR | Zbl

[5] S. V. Nagaev, N. F. Pinelis, “Nekotorye neravenstva dlya raspredelenii summ nezavisimykh sluchainykh velichin”, TVP, 22:2 (1977), 254–263 | MR | Zbl

[6] S. V. Nagaev, “O veroyatnostyakh bolshikh uklonenii v banakhovykh prostranstvakh”, Matem. zametki, 34:2 (1983), 309–313 | MR | Zbl

[7] S. V. Astashkin, F. A. Sukochev, “Ryady nezavisimykh funktsii s nulevym srednim v simmetrichnykh prostranstvakh so svoistvom Kruglova”, Issledovaniya po lineinym operatoram i teorii funktsii. 35, Zap. nauchn. sem. POMI, 345, POMI, SPb., 2007, 25–50 | MR

[8] P. Hitczenko, S. Montgomery-Smith, “Measuring the magnitude of sums of independent random variables”, Ann. Probab., 29:1 (2001), 447–466 | DOI | MR | Zbl

[9] E. M. Nikishin, “Rezonansnye teoremy i nadlineinye operatory”, UMN, 25:6 (1970), 129–191 | MR | Zbl

[10] S. Montgomery-Smith, “Rearrangement invariant norms of symmetric sequence norms of independent sequences of random variables”, Israel J. Math., 131:1 (2002), 51–60 | DOI | MR | Zbl

[11] M. Junge, “The optimal order for the $p$-th moment of sums of independent random variables with respect to symmetric norms and related combinatorial estimates”, Positivity, 10:2 (2006), 201–230 | DOI | MR | Zbl

[12] S. V. Nagaev, “Large deviations of sums of independent random variables”, Ann. Probab., 7:5 (1979), 745–789 | DOI | MR | Zbl

[13] A. A. Borovkov, “Otsenki dlya raspredeleniya summ i maksimumov summ sluchainykh velichin pri nevypolnenii usloviya Kramera”, Sib. matem. zhurn., 41:5 (2000), 997–1038 | MR | Zbl

[14] S. V. Nagaev, “Nizhnie otsenki dlya veroyatnostei bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, TVP, 46:1 (2001), 50–73 | MR | Zbl

[15] S. V. Nagaev, “Nizhnie granitsy dlya veroyatnostei bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, TVP, 46:4 (2001), 785–792 | MR | Zbl

[16] S. V. Nagaev, “O bolshikh ukloneniyakh avtonormirovannoi summy”, TVP, 49:4 (2004), 794–802 | MR | Zbl

[17] L. Mattner, “Lower Bounds for Tails of Sums of Independent Symmetric Random Variables”, TVP, 53:2 (2008), 397–403 | Zbl

[18] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl

[19] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces. II. Function spaces, Ergeb. Math. Grenzgeb., 97, Springer-Verlag, Berlin, 1979 | MR | Zbl

[20] Zh.-P. Kakhan, Sluchainye funktsionalnye ryady, Mir, M., 1973 | MR | Zbl