On Probability Analogs of Rosenthal's Inequality
Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 665-671
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain probability combinatorial inequalities for independent random variables, strengthening the well-known Rosenthal inequality. As a corollary, we prove that the generalized Rosenthal inequality for identically distributed independent functions remains valid in the case of quasinormed symmetric spaces.
Keywords:
Rosenthal inequality, independent random variables, quasinormed symmetric space, bistochastic matrix, Paley–Zygmund inequality.
@article{MZM_2011_90_5_a2,
author = {S. V. Astashkin and K. E. Tikhomirov},
title = {On {Probability} {Analogs} of {Rosenthal's} {Inequality}},
journal = {Matemati\v{c}eskie zametki},
pages = {665--671},
publisher = {mathdoc},
volume = {90},
number = {5},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a2/}
}
S. V. Astashkin; K. E. Tikhomirov. On Probability Analogs of Rosenthal's Inequality. Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 665-671. http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a2/