On Inequalities for the Fourier Transform of Functions from Lorentz Spaces
Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 785-788.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : Fourier transform
Keywords: Lorentz space, general monotone function, general monotone sequence.
@article{MZM_2011_90_5_a13,
     author = {A. N. Kopezhanova and E. D. Nursultanov and L.-E. Persson},
     title = {On {Inequalities} for the {Fourier} {Transform} of {Functions} from {Lorentz} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {785--788},
     publisher = {mathdoc},
     volume = {90},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a13/}
}
TY  - JOUR
AU  - A. N. Kopezhanova
AU  - E. D. Nursultanov
AU  - L.-E. Persson
TI  - On Inequalities for the Fourier Transform of Functions from Lorentz Spaces
JO  - Matematičeskie zametki
PY  - 2011
SP  - 785
EP  - 788
VL  - 90
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a13/
LA  - ru
ID  - MZM_2011_90_5_a13
ER  - 
%0 Journal Article
%A A. N. Kopezhanova
%A E. D. Nursultanov
%A L.-E. Persson
%T On Inequalities for the Fourier Transform of Functions from Lorentz Spaces
%J Matematičeskie zametki
%D 2011
%P 785-788
%V 90
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a13/
%G ru
%F MZM_2011_90_5_a13
A. N. Kopezhanova; E. D. Nursultanov; L.-E. Persson. On Inequalities for the Fourier Transform of Functions from Lorentz Spaces. Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 785-788. http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a13/

[1] E. M. Stein, Trans. Amer. Math. Soc., 83 (1956), 482–492 | DOI | MR | Zbl

[2] E. D. Nursultanov, Dokl. RAN, 361:5 (1998), 597–599 | MR | Zbl

[3] E. Nursultanov, S. Tikhonov, “Net spaces and boundedness of integral operators”, J. Geom. Anal., 2010, Online First | DOI

[4] L.-E. Persson, Acta Math. Acad. Sci. Hungar., 27:3-4 (1976), 267–280 | DOI | MR | Zbl

[5] M. Dyachenko, S. Tikhonov, Topics in Classical Analysis and Applications in Honor of Daniel Waterman, World Sci. Publ., Hackensack, NJ, 2008, 88–101 | MR | Zbl