Continuity of Derivations on Properly Infinite $*$-Algebras of $\tau$-Measurable Operators
Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 776-780.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: $*$-algebra, properly infinite $*$-algebra, measurable operator.
@article{MZM_2011_90_5_a11,
     author = {A. F. Ber},
     title = {Continuity of {Derivations} on {Properly} {Infinite} $*${-Algebras} of $\tau${-Measurable} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {776--780},
     publisher = {mathdoc},
     volume = {90},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a11/}
}
TY  - JOUR
AU  - A. F. Ber
TI  - Continuity of Derivations on Properly Infinite $*$-Algebras of $\tau$-Measurable Operators
JO  - Matematičeskie zametki
PY  - 2011
SP  - 776
EP  - 780
VL  - 90
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a11/
LA  - ru
ID  - MZM_2011_90_5_a11
ER  - 
%0 Journal Article
%A A. F. Ber
%T Continuity of Derivations on Properly Infinite $*$-Algebras of $\tau$-Measurable Operators
%J Matematičeskie zametki
%D 2011
%P 776-780
%V 90
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a11/
%G ru
%F MZM_2011_90_5_a11
A. F. Ber. Continuity of Derivations on Properly Infinite $*$-Algebras of $\tau$-Measurable Operators. Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 776-780. http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a11/

[1] S. Sakai, $C^*$-algebras and $W^*$-algebras, Ergeb. Math. Grenzgeb., 60, Springer-Verlag, New York, 1971 | MR | Zbl

[2] A. F. Ber, V. I. Chilin, F. A. Sukochev, Extracta Math., 21:2 (2006), 107–147 | MR | Zbl

[3] S. Albeverio, Sh. A. Ayupov, K. K. Kudaybergenov, J. Funct. Anal., 256:9 (2009), 2917–2943 | DOI | MR | Zbl

[4] A. F. Ber, B. de Pagter, F. A. Sukochev, “Derivations in Algebras of Operator-Valued Functions”, J. Operator Theory (to appear) , arXiv: 0811.0902

[5] R. V. Kadison, J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, v. II, Pure Appl. Math., 100, Advanced theory, Academic Press, Orlando, FL, 1986 | MR | Zbl

[6] M. A. Muratov, V. I. Chilin, Algebry izmerimykh i lokalno izmerimykh operatorov, Pratsi In-tu matem. NAN Ukraini, 69, In-t matem. NAN Ukraini, Kiiv, 2007

[7] A. F. Ber, B. de Pagter, F. A. Sukochev, Matem. zametki, 87:4 (2010), 502–513 | MR | Zbl