Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_90_5_a11, author = {A. F. Ber}, title = {Continuity of {Derivations} on {Properly} {Infinite} $*${-Algebras} of $\tau${-Measurable} {Operators}}, journal = {Matemati\v{c}eskie zametki}, pages = {776--780}, publisher = {mathdoc}, volume = {90}, number = {5}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a11/} }
A. F. Ber. Continuity of Derivations on Properly Infinite $*$-Algebras of $\tau$-Measurable Operators. Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 776-780. http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a11/
[1] S. Sakai, $C^*$-algebras and $W^*$-algebras, Ergeb. Math. Grenzgeb., 60, Springer-Verlag, New York, 1971 | MR | Zbl
[2] A. F. Ber, V. I. Chilin, F. A. Sukochev, Extracta Math., 21:2 (2006), 107–147 | MR | Zbl
[3] S. Albeverio, Sh. A. Ayupov, K. K. Kudaybergenov, J. Funct. Anal., 256:9 (2009), 2917–2943 | DOI | MR | Zbl
[4] A. F. Ber, B. de Pagter, F. A. Sukochev, “Derivations in Algebras of Operator-Valued Functions”, J. Operator Theory (to appear) , arXiv: 0811.0902
[5] R. V. Kadison, J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, v. II, Pure Appl. Math., 100, Advanced theory, Academic Press, Orlando, FL, 1986 | MR | Zbl
[6] M. A. Muratov, V. I. Chilin, Algebry izmerimykh i lokalno izmerimykh operatorov, Pratsi In-tu matem. NAN Ukraini, 69, In-t matem. NAN Ukraini, Kiiv, 2007
[7] A. F. Ber, B. de Pagter, F. A. Sukochev, Matem. zametki, 87:4 (2010), 502–513 | MR | Zbl