Additivity of the Space of Densities of Simple-Layer Potentials with a Finite Dirichlet Integral and Integrability of Normal Derivatives of Harmonic $W_2^1$-Functions on Lipschitz Surfaces
Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 659-664.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the normal derivatives of piecewise harmonic functions and the densities of surface simple-layer potentials with a finite Dirichlet integral belong to the Lebesgue space on Lipschitz surfaces.
Keywords: simple-layer potential, normal derivative, integrability, Lipschitz surface, harmonic function, Dirichlet integral.
Mots-clés : Lebesgue measure
@article{MZM_2011_90_5_a1,
     author = {V. I. Astakhov},
     title = {Additivity of the {Space} of {Densities} of {Simple-Layer} {Potentials} with a {Finite} {Dirichlet} {Integral} and {Integrability} of {Normal} {Derivatives} of {Harmonic} $W_2^1${-Functions} on {Lipschitz} {Surfaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {659--664},
     publisher = {mathdoc},
     volume = {90},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a1/}
}
TY  - JOUR
AU  - V. I. Astakhov
TI  - Additivity of the Space of Densities of Simple-Layer Potentials with a Finite Dirichlet Integral and Integrability of Normal Derivatives of Harmonic $W_2^1$-Functions on Lipschitz Surfaces
JO  - Matematičeskie zametki
PY  - 2011
SP  - 659
EP  - 664
VL  - 90
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a1/
LA  - ru
ID  - MZM_2011_90_5_a1
ER  - 
%0 Journal Article
%A V. I. Astakhov
%T Additivity of the Space of Densities of Simple-Layer Potentials with a Finite Dirichlet Integral and Integrability of Normal Derivatives of Harmonic $W_2^1$-Functions on Lipschitz Surfaces
%J Matematičeskie zametki
%D 2011
%P 659-664
%V 90
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a1/
%G ru
%F MZM_2011_90_5_a1
V. I. Astakhov. Additivity of the Space of Densities of Simple-Layer Potentials with a Finite Dirichlet Integral and Integrability of Normal Derivatives of Harmonic $W_2^1$-Functions on Lipschitz Surfaces. Matematičeskie zametki, Tome 90 (2011) no. 5, pp. 659-664. http://geodesic.mathdoc.fr/item/MZM_2011_90_5_a1/

[1] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR | Zbl

[2] V. I. Smirnov, Kurs vysshei matematiki, v. 5, GIFML, M., 1959 | MR | Zbl

[3] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1972 | MR | Zbl

[4] N. E. Kochin, Vektornoe ischislenie i nachala tenzornogo ischisleniya, Izd-vo AN SSSR, M., 1961 | MR

[5] V. I. Astakhov, “Poverkhnostnye potentsialy, operatory i uravneniya teorii potentsiala v energeticheskikh prostranstvakh”, Matematicheskie metody v fizike, tekhnike i ekonomike, Yubileinyi sbornik nauchnykh rabot kafedry prikladnoi matematiki YuRGTU (NPI), Red. zhurn. Izv. vuzov. Elektromekhanika, Novocherkassk, 2001, 5–34

[6] S. G. Mikhlin, Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977 | MR

[7] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, v. 1, Vischa shkola, Kharkov, 1977 | MR | Zbl

[8] N. M. Gyunter, Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoi fiziki, Gostekhteorizdat, M., 1953 | MR | Zbl

[9] L. Shvarts, Matematicheskie metody dlya fizicheskikh nauk, Mir, M., 1965 | MR | Zbl