Study of the Blow-Up of Solutions of Systems of Equations of Hydrodynamic Type
Matematičeskie zametki, Tome 90 (2011) no. 4, pp. 613-629.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the initial boundary-value problem for three-dimensional systems of equations of pseudoparabolic type. The system is similar to the Oskolkov system, but differs from it by the presence of a source of arbitrary order and of a nonlinearity multiplying the highest derivative with respect to time. The local (in time) solvability of the problem is proved in the weak generalized sense. Sufficient conditions for the global (in time) solvability are obtained. We find estimates for the existence time of the solution and for the initial function associated with the blow-up of the solution in finite time.
Mots-clés : equations of hydrodynamic type, pseudoparabolic equation
Keywords: initial boundary-value problem, blow-up of a solution, bounded Lipschitz domain, Sylvester's criterion.
@article{MZM_2011_90_4_a9,
     author = {E. V. Yushkov},
     title = {Study of the {Blow-Up} of {Solutions} of {Systems} of {Equations} of {Hydrodynamic} {Type}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {613--629},
     publisher = {mathdoc},
     volume = {90},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a9/}
}
TY  - JOUR
AU  - E. V. Yushkov
TI  - Study of the Blow-Up of Solutions of Systems of Equations of Hydrodynamic Type
JO  - Matematičeskie zametki
PY  - 2011
SP  - 613
EP  - 629
VL  - 90
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a9/
LA  - ru
ID  - MZM_2011_90_4_a9
ER  - 
%0 Journal Article
%A E. V. Yushkov
%T Study of the Blow-Up of Solutions of Systems of Equations of Hydrodynamic Type
%J Matematičeskie zametki
%D 2011
%P 613-629
%V 90
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a9/
%G ru
%F MZM_2011_90_4_a9
E. V. Yushkov. Study of the Blow-Up of Solutions of Systems of Equations of Hydrodynamic Type. Matematičeskie zametki, Tome 90 (2011) no. 4, pp. 613-629. http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a9/

[1] A. P. Oskolkov, “O nekotorykh nestatsionarnykh lineinykh i kvazilineinykh sistemakh, vstrechayuschikhsya pri izuchenii dvizheniya vyazkikh zhidkostei”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 9, Zap. nauchn. sem. LOMI, 59, Izd-vo «Nauka», Leningrad. otd., L., 1976, 133–177 | MR | Zbl

[2] M. O. Korpusov, A. G. Sveshnikov, “O razrushenii resheniya sistemy uravnenii Oskolkova”, Matem. sb., 200:4 (2009), 83–108 | MR | Zbl

[3] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Matematika i prikladnaya matematika, Fizmatlit, M., 2007 | Zbl

[4] H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+\mathfrak F(u)$”, Arch. Rational Mech. Anal., 51 (1973), 371–386 | MR | Zbl

[5] R. Temam, Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[6] I. G. Petrovskii, Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1970 | MR | Zbl

[7] V. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR | Zbl