Keywords: GCD of the minors of a matrix, the group $GL_t(R)$, principal ideal, ring, canonical diagonal form of a matrix.
@article{MZM_2011_90_4_a8,
author = {V. P. Shchedrik},
title = {On the {Interdependence} between {Invariant} {Multipliers} of a {Block-Triangular} {Matrix} and {Its} {Diagonal} {Blocks}},
journal = {Matemati\v{c}eskie zametki},
pages = {599--612},
year = {2011},
volume = {90},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a8/}
}
TY - JOUR AU - V. P. Shchedrik TI - On the Interdependence between Invariant Multipliers of a Block-Triangular Matrix and Its Diagonal Blocks JO - Matematičeskie zametki PY - 2011 SP - 599 EP - 612 VL - 90 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a8/ LA - ru ID - MZM_2011_90_4_a8 ER -
V. P. Shchedrik. On the Interdependence between Invariant Multipliers of a Block-Triangular Matrix and Its Diagonal Blocks. Matematičeskie zametki, Tome 90 (2011) no. 4, pp. 599-612. http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a8/
[1] W. E. Roth, “The equation $AX-YB=C$ and $AX-XB=C$ in matrices”, Proc. Amer. Math. Soc., 3:3 (1952), 392–396 | MR | Zbl
[2] R. B. Feinberg, “Equivalence of partitioned matrices”, J. Res. Nat. Bur. Standards Sect. B, 80 (1976), 89–97 | MR | Zbl
[3] W. H. Gustafson, “Roth's theorem over commutative rings”, Linear Algebra Appl., 23 (1979), 245–251 | DOI | MR | Zbl
[4] R. E. Hartwig, P. Patricio, “On Roth's pseudo equivalence over rings”, Electron. J. Linear Algebra, 16 (2007), 111–124 | MR | Zbl
[5] I. Kaplansky, “Elementary divisor ring and modules”, Trans. Amer. Math. Soc., 66 (1949), 464–491 | DOI | MR | Zbl
[6] M. Newman, “The Smith normal form of a partitioned matrix”, J. Res. Nat. Bur. Standards Sect. B, 78 (1974), 3–6 | MR | Zbl
[7] L. J. Gerstein, “A local approach to matrix equivalence”, Linear Algebra and Appl., 16:3 (1977), 221–232 | DOI | MR | Zbl