Description of Generalized Resolvents and Characteristic Matrices of Differential Operators in Terms of the Boundary Parameter
Matematičeskie zametki, Tome 90 (2011) no. 4, pp. 558-583
Voir la notice de l'article provenant de la source Math-Net.Ru
We supplement and further develop well-known results due to Shtraus on the generalized resolvents and spectral functions of the minimal operator $L_0$ generated by a formally self-adjoint differential expression of even order with operator coefficients given on the interval $[0,b\rangle$, where $b\le\infty$. Our approach is based on the notion of a disintegrating boundary triple, which allows us to establish a relation between the Shtraus method and boundary-value problems with spectral parameter in the boundary condition. In particular, we obtain a parametrization of all the characteristic matrices $\Omega(\lambda)$ of the operator $L_0$ in terms of the spectral parameter corresponding to a boundary-value problem. Such a parametrization is given as a block representation of the matrix $\Omega(\lambda)$, as well as by formulas similar to Krein's well-known formula for generalized resolvents.
Keywords:
differential operator of even order, minimal operator, self-adjoint operator, generalized resolvent, characteristic matrix, boundary-value problem, deficiency index, boundary triple, holomorphic function, Nevanlinna function, Weyl function.
@article{MZM_2011_90_4_a6,
author = {V. I. Mogilevskii},
title = {Description of {Generalized} {Resolvents} and {Characteristic} {Matrices} of {Differential} {Operators} in {Terms} of the {Boundary} {Parameter}},
journal = {Matemati\v{c}eskie zametki},
pages = {558--583},
publisher = {mathdoc},
volume = {90},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a6/}
}
TY - JOUR AU - V. I. Mogilevskii TI - Description of Generalized Resolvents and Characteristic Matrices of Differential Operators in Terms of the Boundary Parameter JO - Matematičeskie zametki PY - 2011 SP - 558 EP - 583 VL - 90 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a6/ LA - ru ID - MZM_2011_90_4_a6 ER -
%0 Journal Article %A V. I. Mogilevskii %T Description of Generalized Resolvents and Characteristic Matrices of Differential Operators in Terms of the Boundary Parameter %J Matematičeskie zametki %D 2011 %P 558-583 %V 90 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a6/ %G ru %F MZM_2011_90_4_a6
V. I. Mogilevskii. Description of Generalized Resolvents and Characteristic Matrices of Differential Operators in Terms of the Boundary Parameter. Matematičeskie zametki, Tome 90 (2011) no. 4, pp. 558-583. http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a6/