Description of Generalized Resolvents and Characteristic Matrices of Differential Operators in Terms of the Boundary Parameter
Matematičeskie zametki, Tome 90 (2011) no. 4, pp. 558-583

Voir la notice de l'article provenant de la source Math-Net.Ru

We supplement and further develop well-known results due to Shtraus on the generalized resolvents and spectral functions of the minimal operator $L_0$ generated by a formally self-adjoint differential expression of even order with operator coefficients given on the interval $[0,b\rangle$, where $b\le\infty$. Our approach is based on the notion of a disintegrating boundary triple, which allows us to establish a relation between the Shtraus method and boundary-value problems with spectral parameter in the boundary condition. In particular, we obtain a parametrization of all the characteristic matrices $\Omega(\lambda)$ of the operator $L_0$ in terms of the spectral parameter corresponding to a boundary-value problem. Such a parametrization is given as a block representation of the matrix $\Omega(\lambda)$, as well as by formulas similar to Krein's well-known formula for generalized resolvents.
Keywords: differential operator of even order, minimal operator, self-adjoint operator, generalized resolvent, characteristic matrix, boundary-value problem, deficiency index, boundary triple, holomorphic function, Nevanlinna function, Weyl function.
@article{MZM_2011_90_4_a6,
     author = {V. I. Mogilevskii},
     title = {Description of {Generalized} {Resolvents} and {Characteristic} {Matrices} of {Differential} {Operators} in {Terms} of the {Boundary} {Parameter}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {558--583},
     publisher = {mathdoc},
     volume = {90},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a6/}
}
TY  - JOUR
AU  - V. I. Mogilevskii
TI  - Description of Generalized Resolvents and Characteristic Matrices of Differential Operators in Terms of the Boundary Parameter
JO  - Matematičeskie zametki
PY  - 2011
SP  - 558
EP  - 583
VL  - 90
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a6/
LA  - ru
ID  - MZM_2011_90_4_a6
ER  - 
%0 Journal Article
%A V. I. Mogilevskii
%T Description of Generalized Resolvents and Characteristic Matrices of Differential Operators in Terms of the Boundary Parameter
%J Matematičeskie zametki
%D 2011
%P 558-583
%V 90
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a6/
%G ru
%F MZM_2011_90_4_a6
V. I. Mogilevskii. Description of Generalized Resolvents and Characteristic Matrices of Differential Operators in Terms of the Boundary Parameter. Matematičeskie zametki, Tome 90 (2011) no. 4, pp. 558-583. http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a6/