Description of Generalized Resolvents and Characteristic Matrices of Differential Operators in Terms of the Boundary Parameter
Matematičeskie zametki, Tome 90 (2011) no. 4, pp. 558-583.

Voir la notice de l'article provenant de la source Math-Net.Ru

We supplement and further develop well-known results due to Shtraus on the generalized resolvents and spectral functions of the minimal operator $L_0$ generated by a formally self-adjoint differential expression of even order with operator coefficients given on the interval $[0,b\rangle$, where $b\le\infty$. Our approach is based on the notion of a disintegrating boundary triple, which allows us to establish a relation between the Shtraus method and boundary-value problems with spectral parameter in the boundary condition. In particular, we obtain a parametrization of all the characteristic matrices $\Omega(\lambda)$ of the operator $L_0$ in terms of the spectral parameter corresponding to a boundary-value problem. Such a parametrization is given as a block representation of the matrix $\Omega(\lambda)$, as well as by formulas similar to Krein's well-known formula for generalized resolvents.
Keywords: differential operator of even order, minimal operator, self-adjoint operator, generalized resolvent, characteristic matrix, boundary-value problem, deficiency index, boundary triple, holomorphic function, Nevanlinna function, Weyl function.
@article{MZM_2011_90_4_a6,
     author = {V. I. Mogilevskii},
     title = {Description of {Generalized} {Resolvents} and {Characteristic} {Matrices} of {Differential} {Operators} in {Terms} of the {Boundary} {Parameter}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {558--583},
     publisher = {mathdoc},
     volume = {90},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a6/}
}
TY  - JOUR
AU  - V. I. Mogilevskii
TI  - Description of Generalized Resolvents and Characteristic Matrices of Differential Operators in Terms of the Boundary Parameter
JO  - Matematičeskie zametki
PY  - 2011
SP  - 558
EP  - 583
VL  - 90
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a6/
LA  - ru
ID  - MZM_2011_90_4_a6
ER  - 
%0 Journal Article
%A V. I. Mogilevskii
%T Description of Generalized Resolvents and Characteristic Matrices of Differential Operators in Terms of the Boundary Parameter
%J Matematičeskie zametki
%D 2011
%P 558-583
%V 90
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a6/
%G ru
%F MZM_2011_90_4_a6
V. I. Mogilevskii. Description of Generalized Resolvents and Characteristic Matrices of Differential Operators in Terms of the Boundary Parameter. Matematičeskie zametki, Tome 90 (2011) no. 4, pp. 558-583. http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a6/

[1] A. V. Shtraus, “Ob obobschennykh rezolventakh i spektralnykh funktsiyakh differentsialnykh operatorov chetnogo poryadka”, Izv. AN SSSR. Ser. matem., 21:6 (1957), 785–808 | MR | Zbl

[2] V. M. Bruk, “Ob obobschennykh rezolventakh i spektralnykh funktsiyakh differentsialnykh operatorov chetnogo poryadka v prostranstve vektor-funktsii”, Matem. zametki, 15:6 (1974), 945–954 | MR | Zbl

[3] A. Dijksma, H. Langer, “Operator theory and ordinary differential operators”, Lectures on Operator Theory and its Applications (Waterloo, ON, 1994), Fields Inst. Monogr., 3, Amer. Math. Soc., Providence, RI, 1996, 73–139 | MR | Zbl

[4] P. A. Binding, P. J. Browne, B. A. Watson, “Sturm–Liouville problems with boundary condtions rationally dependent on the eigenparameter. I”, Proc. Edinb. Math. Soc. (2), 45:3 (2002), 631–645 | DOI | MR | Zbl

[5] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[6] V. I. Gorbachuk, M. L. Gorbachuk, Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Naukova dumka, Kiev, 1984 | MR | Zbl

[7] V. A. Derkach, M. M. Malamud, “Generalized resolvents and the boundary value problems for Hermitian operators with gaps”, J. Funct. Anal., 95:1 (1991), 1–95 | DOI | MR | Zbl

[8] V. Mogilevskii, “Boundary triplets and Titchmarsh–Weyl functions of differential operators with arbitrary deficiency indices”, Methods Funct. Anal. Topology, 15:3 (2009), 280–300 | MR | Zbl

[9] V. M. Bruk, “Ob odnom klasse kraevykh zadach so spektralnym parametrom v granichnom uslovii”, Matem. sb., 100:2 (1976), 210–216 | MR | Zbl

[10] V. Mogilevskii, “Boundary triplets and Krein type resolvent formula for symmetric operators with unequal defect numbers”, Methods Funct. Anal. Topology, 12:3 (2006), 258–280 | MR | Zbl

[11] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR | Zbl

[12] I. S. Kats, “Kratnost spektra differentsialnogo operatora vtorogo poryadka i razlozhenie po sobstvennym funktsiyam”, Izv. AN SSSR. Ser. matem., 27:5 (1963), 1081–1112 | MR | Zbl

[13] A. Dijksma, H. Langer, H. de Snoo, “Hamiltonian systems with eigenvalue depending boundary conditions”, Contributions to Operator Theory and its Applications (Mesa, AZ, 1987), Oper. Theory Adv. Appl., 35, Birkhäuser, Basel, 1988, 37–83 | MR | Zbl

[14] A. Dijksma, H. Langer, H. de Snoo, “Eigenvalues and pole functions of Hamiltonian systems with eigenvalue depending boundary conditions”, Math. Nachr., 161:1 (1993), 107–154 | DOI | MR | Zbl

[15] V. A. Derkach, S. Hassi, M. M. Malamud, H. S V. de Snoo, “Generalized resolvents of symmetric operators and admissibility”, Methods Funct. Anal. Topology, 6:3 (2000), 24–55 | MR | Zbl

[16] V. Derkach, S. Hassi, M. Malamud, H. de Snoo, “Boundary relations and generalized resolvents of symmetric operators”, Russ. J. Math. Phys., 16:1 (2009), 17–60 | MR | Zbl

[17] V. Mogilevskii, “Nevanlinna type families of linear relations and the dilation theorem”, Methods Funct. Anal. Topology, 12:1 (2006), 38–56 | MR | Zbl

[18] F. S. Rofe-Beketov, “O samosopryazhennykh rasshireniyakh differentsialnykh operatorov v prostranstve vektor-funktsii”, Teoriya funkts., funkts. analiz i ikh prilozh., 1969, no. 8, 3–24 | MR | Zbl

[19] V. Mogilevskii, “Fundamental solutions of boundary problems and resolvents of differential operators”, Ukr. matem. vestn., 6:4 (2009), 492–530 | MR

[20] M. M. Malamud, V. I. Mogilevskii, “Krein type formula for canonical resolvents of dual pairs of linear relations”, Methods Funct. Anal. Topology, 8:4 (2002), 72–100 | MR | Zbl

[21] V. A. Derkach, M. M. Malamud, “Kharakteristicheskie funktsii pochti razreshimykh rasshirenii ermitovykh operatorov”, Ukr. matem. zhurn., 44:4 (1992), 435–459 | MR | Zbl