On $\pi_2$ Almost Geodesic Mappings of Almost Hermitian Manifolds
Matematičeskie zametki, Tome 90 (2011) no. 4, pp. 517-526.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of almost geodesic mappings, namely, almost geodesic mappings of class $\pi_2$, and obtain conditions under which almost Hermitian manifolds admit almost geodesic mappings of class $\pi_2$. We prove that an almost Hermitian manifold admits a $\pi_2$-mapping with respect to a Riemannian connection if and only if it is an $NK$-manifold. We obtain a condition on the defining form $\psi$ of any nontrivial $\pi_2(e)$-mapping under which a proper $NK$-structure is taken to a proper $NK$-structure.
Keywords: almost Hermitian manifold, nearly Kählerian ($NK$)-manifold, almost geodesic mapping, affine connection, Riemannian connection, pseudo-Riemannian manifold.
@article{MZM_2011_90_4_a2,
     author = {A. V. Emelianov and V. F. Kirichenko},
     title = {On $\pi_2$ {Almost} {Geodesic} {Mappings} of {Almost} {Hermitian} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {517--526},
     publisher = {mathdoc},
     volume = {90},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a2/}
}
TY  - JOUR
AU  - A. V. Emelianov
AU  - V. F. Kirichenko
TI  - On $\pi_2$ Almost Geodesic Mappings of Almost Hermitian Manifolds
JO  - Matematičeskie zametki
PY  - 2011
SP  - 517
EP  - 526
VL  - 90
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a2/
LA  - ru
ID  - MZM_2011_90_4_a2
ER  - 
%0 Journal Article
%A A. V. Emelianov
%A V. F. Kirichenko
%T On $\pi_2$ Almost Geodesic Mappings of Almost Hermitian Manifolds
%J Matematičeskie zametki
%D 2011
%P 517-526
%V 90
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a2/
%G ru
%F MZM_2011_90_4_a2
A. V. Emelianov; V. F. Kirichenko. On $\pi_2$ Almost Geodesic Mappings of Almost Hermitian Manifolds. Matematičeskie zametki, Tome 90 (2011) no. 4, pp. 517-526. http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a2/

[3] V. F. Kirichenko, “Obobschennye klassy Greya–Khervelly i golomorfno-proektivnye preobrazovaniya obobschennykh pochti ermitovykh struktur”, Izv. RAN. Ser. matem., 69:5 (2005), 107–132 | MR | Zbl

[4] N. S. Sinyukov, “Pochti geodezicheskie otobrazheniya prostranstv affinnoi svyaznosti i $e$-stuktury”, Matem. zametki, 7:4 (1970), 449–459 | MR | Zbl

[5] Kh. Vavrzhikova, I. Mikesh, O. Pokorna, G. Starko, “Ob osnovnykh uravneniyakh pochti geodezicheskikh otobrazhenii $\pi_2(e)$”, Izv. vuzov. Matem., 2007, no. 1, 10–15 | MR | Zbl

[6] V. F. Kirichenko, Differentsialno-geometricheskie struktury na mnogoobraziyakh, MPGU, M., 2003

[7] N. S. Sinyukov, Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979 | MR | Zbl

[8] Kh. M. Aboud, Golomorfno-geodezicheskie preobrazovaniya pochti ermitovykh mnogoobrazii, Dis. $\dots$ kand. fiz.-matem. nauk, M., 2002