The Behavior of Conformal Maps of Domains Near Convex Boundary Arcs
Matematičeskie zametki, Tome 90 (2011) no. 4, pp. 501-516.

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior of the derivatives of conformal maps of the unit disk onto simply connected domains in the complex plane whose boundaries contain convex or concave attainable arcs, as well as the behavior of the derivatives of the inverse maps, is studied. It is proved that these derivatives exist and are bounded on the corresponding arcs and near them; a criterion for their continuity at points of these arcs is stated and proved.
Keywords: analytic conformal map, simply connected domain, convex (concave) attainable boundary arc, boundary arc, angular boundary limit, angular derivative, Hardy class, Schwarz integral, Borel measure.
Mots-clés : Jordan arc, Poisson integral
@article{MZM_2011_90_4_a1,
     author = {E. P. Dolzhenko and S. V. Kolesnikov},
     title = {The {Behavior} of {Conformal} {Maps} of {Domains} {Near} {Convex} {Boundary} {Arcs}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {501--516},
     publisher = {mathdoc},
     volume = {90},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a1/}
}
TY  - JOUR
AU  - E. P. Dolzhenko
AU  - S. V. Kolesnikov
TI  - The Behavior of Conformal Maps of Domains Near Convex Boundary Arcs
JO  - Matematičeskie zametki
PY  - 2011
SP  - 501
EP  - 516
VL  - 90
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a1/
LA  - ru
ID  - MZM_2011_90_4_a1
ER  - 
%0 Journal Article
%A E. P. Dolzhenko
%A S. V. Kolesnikov
%T The Behavior of Conformal Maps of Domains Near Convex Boundary Arcs
%J Matematičeskie zametki
%D 2011
%P 501-516
%V 90
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a1/
%G ru
%F MZM_2011_90_4_a1
E. P. Dolzhenko; S. V. Kolesnikov. The Behavior of Conformal Maps of Domains Near Convex Boundary Arcs. Matematičeskie zametki, Tome 90 (2011) no. 4, pp. 501-516. http://geodesic.mathdoc.fr/item/MZM_2011_90_4_a1/

[1] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl

[2] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992 | MR | Zbl

[3] S. E. Warschawski, “On the differentiability at the boundary in conformal mapping”, Proc. Amer. Math. Soc., 12 (1961), 614–620 | DOI | MR | Zbl

[4] E. P. Dolzhenko, “Gladkost garmonicheskikh i analiticheskikh funktsii v granichnykh tochkakh oblasti”, Izv. AN SSSR. Ser. matem., 29:5 (1965), 1069–1084 | MR | Zbl

[5] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950 | MR | Zbl

[6] M. Brelo, Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | MR | Zbl

[7] E. P. Dolzhenko, “O granichnoi gladkosti konformnykh otobrazhenii oblastei s negladkimi granitsami”, Dokl. RAN, 415:2 (2007), 155–159 | MR | Zbl