On Quasilinear Beltrami-Type Equations with Degeneration
Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 445-453.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the solvability problem for the equation $f_{\overline{z}}=\nu(z,f(z)) f_z$, where the function $\nu(z,w)$ of two variables can be close to unity. Such equations are called quasilinear Beltrami-type equations with ellipticity degeneration. We prove that, under some rather general conditions on $\nu(z,w)$, the above equation has a regular homeomorphic solution in the Sobolev class $W_{\operatorname{loc}}^{1,1}$. Moreover, such solutions $f$ satisfy the inclusion $f^{\,-1}\in W_{\operatorname{loc}}^{1,2}$.
Keywords: quasilinear Beltrami-type equation, existence theorem, regular homeomorphic solution, Sobolev class, homeomorphism, Carathéodory condition, function of bounded mean oscillation.
@article{MZM_2011_90_3_a9,
     author = {E. A. Sevost'yanov},
     title = {On {Quasilinear} {Beltrami-Type} {Equations} with {Degeneration}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {445--453},
     publisher = {mathdoc},
     volume = {90},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a9/}
}
TY  - JOUR
AU  - E. A. Sevost'yanov
TI  - On Quasilinear Beltrami-Type Equations with Degeneration
JO  - Matematičeskie zametki
PY  - 2011
SP  - 445
EP  - 453
VL  - 90
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a9/
LA  - ru
ID  - MZM_2011_90_3_a9
ER  - 
%0 Journal Article
%A E. A. Sevost'yanov
%T On Quasilinear Beltrami-Type Equations with Degeneration
%J Matematičeskie zametki
%D 2011
%P 445-453
%V 90
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a9/
%G ru
%F MZM_2011_90_3_a9
E. A. Sevost'yanov. On Quasilinear Beltrami-Type Equations with Degeneration. Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 445-453. http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a9/

[1] B. V. Boyarskii, “Obobschennye resheniya sistemy differentsialnykh uravnenii pervogo poryadka ellipticheskogo tipa s razryvnymi koeffitsientami”, Matem. sb., 43:4 (1957), 451–503 | MR | Zbl

[2] V. G. Maz'ya, Sobolev Spaces, Springer-Verlag, Berlin, 1985 | MR | Zbl

[3] O. Lehto, K. Virtanen, Quasiconformal Mappings in the Plane, Grundlehren Math. Wiss., 126, Springer, New York, 1973 | MR | Zbl

[4] M. A. Brakalova, J. A. Jenkins, “On solutions of the Beltrami equation”, J. Anal. Math., 76:1 (1998), 67–92 | DOI | MR | Zbl

[5] V. Gutlyanskii, O. Martio, T. Sugawa, M. Vuorinen, “On the degenerate Beltrami equation”, Trans. Amer. Math. Soc., 357:3 (2005), 875–900 | DOI | MR | Zbl

[6] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in Modern Mapping Theory, Springer Monogr. Math., Springer, New York, 2009 | MR | Zbl

[7] O. Martio, V. Miklyukov, “On existence and uniqueness of degenerate Beltrami equation”, Complex Var. Theory Appl., 49:7-9 (2004), 647–656 | MR | Zbl

[8] V. Ryazanov, U. Srebro, E. Yakubov, “On convergence theory for Beltrami equations”, Ukr. Math. Bull., 5:4 (2008), 517–528 | MR

[9] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14:3 (1961), 415–426 | DOI | MR | Zbl

[10] C. J. Bishop, V. Ya. Gutlyanskii, O. Martio, M. Vuorinen, “On conformal dilatation in space”, Int. J. Math. Math. Sci., 2003:22 (2003), 1397–1420 | DOI | MR | Zbl

[11] L. Alfors, Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR | Zbl

[12] Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR | Zbl

[13] S. P. Ponomarev, “$N^{-1}$-svoistvo otobrazhenii i uslovie $(N)$ Luzina”, Matem. zametki, 58:3 (1995), 411–418 | MR | Zbl

[14] B. V. Shabat, “K teorii kvazikonformnykh otobrazhenii v prostranstve”, Dokl. AN SSSR, 132:5 (1960), 1045–1048 | MR | Zbl

[15] V. A. Zorich, “Dopustimyi poryadok rosta kharakteristiki kvazikonformnosti v teoreme Lavrenteva”, Dokl. AN SSSR, 181:3 (1968), 530–533 | MR | Zbl