Estimates in Beurling--Helson Type Theorems: Multidimensional Case
Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 394-407

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the spaces $A_p(\mathbb T^m)$ of functions $f$ on the $m$-dimensional torus $\mathbb T^m$ such that the sequence of Fourier coefficients $\widehat{f}=\{\widehat{f}(k),\,k\in\mathbb Z^m\}$ belongs to $l^p(\mathbb Z^m)$, $1\le p2$. The norm on $A_p(\mathbb T^m)$ is defined by $\|f\|_{A_p(\mathbb T^m)}=\|\widehat{f}\|_{l^p(\mathbb Z^m)}$. We study the rate of growth of the norms $\|e^{i\lambda\varphi}\|_{A_p(\mathbb T^m)}$ as $|\lambda|\to\infty$, $\lambda\in\mathbb R$, for $C^1$-smooth real functions $\varphi$ on $\mathbb T^m$ (the one-dimensional case was investigated by the author earlier). The lower estimates that we obtain have direct analogs for the spaces $A_p(\mathbb R^m)$.
Keywords: harmonic analysis, Fourier series, Beurling–Helson theorem.
@article{MZM_2011_90_3_a5,
     author = {V. V. Lebedev},
     title = {Estimates in {Beurling--Helson} {Type} {Theorems:} {Multidimensional} {Case}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {394--407},
     publisher = {mathdoc},
     volume = {90},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a5/}
}
TY  - JOUR
AU  - V. V. Lebedev
TI  - Estimates in Beurling--Helson Type Theorems: Multidimensional Case
JO  - Matematičeskie zametki
PY  - 2011
SP  - 394
EP  - 407
VL  - 90
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a5/
LA  - ru
ID  - MZM_2011_90_3_a5
ER  - 
%0 Journal Article
%A V. V. Lebedev
%T Estimates in Beurling--Helson Type Theorems: Multidimensional Case
%J Matematičeskie zametki
%D 2011
%P 394-407
%V 90
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a5/
%G ru
%F MZM_2011_90_3_a5
V. V. Lebedev. Estimates in Beurling--Helson Type Theorems: Multidimensional Case. Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 394-407. http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a5/