Uniqueness of Recovering the Parameters of Sectional Operators on Simple Complex Lie Algebras
Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 384-393.

Voir la notice de l'article provenant de la source Math-Net.Ru

By a sectional operator on a simple complex Lie algebra $\mathfrak g$ we mean a self-adjoint operator $\phi\colon\mathfrak g\to\mathfrak g$ satisfying the identity $[\phi x,a]=[x,b]$ for some chosen elements $a,b\in\mathfrak g$, $a\ne0$. The problem concerning the uniqueness of recovering the parameters of a given specific operator arises in many areas of geometry. The main result of the paper is as follows: if $a$ and $b$ are not proportional and $a$ is regular and semisimple, then every pair of parameters $p$, $q$ of the sectional operator is obtained from the pair $a$, $b$ by multiplying the pair by a nonzero scalar, i.e., the parameters are recovered uniquely in a sense. It follows that the Mishchenko–Fomenko subalgebras for regular semisimple elements of the Poisson–Lie algebra coincide for proportional values of the parameters only.
Keywords: simple complex Lie algebra, sectional operator, caustic, Mishchenko–Fomenko algebra, Killing form, root system, Weyl basis, Jacobi identity.
Mots-clés : semi-simple element of a Poisson–Lie algebra, Cartan subalgebra
@article{MZM_2011_90_3_a4,
     author = {A. Yu. Konyaev},
     title = {Uniqueness of {Recovering} the {Parameters} of {Sectional} {Operators} on {Simple} {Complex} {Lie} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {384--393},
     publisher = {mathdoc},
     volume = {90},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a4/}
}
TY  - JOUR
AU  - A. Yu. Konyaev
TI  - Uniqueness of Recovering the Parameters of Sectional Operators on Simple Complex Lie Algebras
JO  - Matematičeskie zametki
PY  - 2011
SP  - 384
EP  - 393
VL  - 90
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a4/
LA  - ru
ID  - MZM_2011_90_3_a4
ER  - 
%0 Journal Article
%A A. Yu. Konyaev
%T Uniqueness of Recovering the Parameters of Sectional Operators on Simple Complex Lie Algebras
%J Matematičeskie zametki
%D 2011
%P 384-393
%V 90
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a4/
%G ru
%F MZM_2011_90_3_a4
A. Yu. Konyaev. Uniqueness of Recovering the Parameters of Sectional Operators on Simple Complex Lie Algebras. Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 384-393. http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a4/

[1] V. V. Trofimov, A. T. Fomenko, “Gruppovye neinvariantnye simplekticheskie struktury i gamiltonovy potoki na simmetricheskikh prostranstvakh”, Tr. sem. vekt. i tenz. analiz., 21, Izd-vo Mosk. un-ta, M., 1983, 23–83 | MR | Zbl

[2] S. V. Manakov, “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funkts. analiz i ego pril., 10:4 (1976), 93–94 | MR | Zbl

[3] A. S. Mischenko, A. T. Fomenko, “Integriruemost uravnenii Eilera na poluprostykh algebrakh Li”, Tr. sem. vekt. i tenz. analiz., 19, Izd-vo Mosk. un-ta, M., 1979, 3–94 | MR | Zbl

[4] A. S. Mischenko, A. T. Fomenko, “Integrirovanie uravnenii Eilera na poluprostykh algebrakh Li”, Dokl. AN SSSR, 231:3 (1976), 536–538 | MR | Zbl

[5] A. S. Mischenko, A. T. Fomenko, “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 396–415 | MR | Zbl

[6] A. T. Fomenko, Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo Mosk. un-ta, M., 1988 | MR | Zbl

[7] A. V. Bolsinov, V. Kiosak, V. S. Matveev, “A Fubini theorem for pseudo-Riemannian geodesically equivalent metrics”, J. Lond. Math. Soc. (2), 80:2 (2009), 341–356 | DOI | MR | Zbl

[8] Dzh. Khamfris, Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003 | MR | Zbl

[9] B. Kostant, “Lie group representations on polynomial rings”, Amer. J. Math., 85:3 (1963), 327–404 | DOI | MR | Zbl