Approximation of Classes of Convolutions by Linear Operators of Special Form
Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 351-361
Voir la notice de l'article provenant de la source Math-Net.Ru
A parametric family of operators $G_\rho$ is constructed for the class of convolutions $\mathbf{W}_{p,m}(K)$ whose kernel $K$ was generated by the moment sequence. We obtain a formula for evaluating
$$
E(\mathbf{W}_{p,m}(K);G_\rho)_p:=\sup_{f\in\mathbf{W}_{p,m}(K)}\|f-G_\rho(f)\|_p.
$$
For the case in which $\mathbf{W}_{p,m}(K)=\mathbf{W}^{r,\beta}_{p,m}$, we obtain an expansion in powers of the parameter $\varepsilon=-\ln\rho$ for $E(\mathbf{W}^{r,\beta}_{p,m};G_{\rho,r})_p$, where $\beta\in\mathbb{Z}$, $r>0$, and $m\in\mathbb{N}$, while $p=1$ or $p=\infty$.
Mots-clés :
convolution, Euler polynomial
Keywords: linear operator, periodic measurable function, moment sequence, Borel measure, Fourier series, Bernoulli numbers.
Keywords: linear operator, periodic measurable function, moment sequence, Borel measure, Fourier series, Bernoulli numbers.
@article{MZM_2011_90_3_a2,
author = {V. P. Zastavnyi and V. V. Savchuk},
title = {Approximation of {Classes} of {Convolutions} by {Linear} {Operators} of {Special} {Form}},
journal = {Matemati\v{c}eskie zametki},
pages = {351--361},
publisher = {mathdoc},
volume = {90},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a2/}
}
TY - JOUR AU - V. P. Zastavnyi AU - V. V. Savchuk TI - Approximation of Classes of Convolutions by Linear Operators of Special Form JO - Matematičeskie zametki PY - 2011 SP - 351 EP - 361 VL - 90 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a2/ LA - ru ID - MZM_2011_90_3_a2 ER -
V. P. Zastavnyi; V. V. Savchuk. Approximation of Classes of Convolutions by Linear Operators of Special Form. Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 351-361. http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a2/