Asymptotic Hamiltonian Reduction for Geodesics on Deformed Spheres and the Funk--Minkowski Transform
Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 474-477.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: asymptotic Hamiltonian reduction, geodesics on two-dimensional surfaces, Funk–Minkowski transform, Lagrange equation of the first kind
Mots-clés : Poisson bracket, Levi-Cività symbol.
@article{MZM_2011_90_3_a14,
     author = {D. O. Sinitsyn},
     title = {Asymptotic {Hamiltonian} {Reduction} for {Geodesics} on {Deformed} {Spheres} and the {Funk--Minkowski} {Transform}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {474--477},
     publisher = {mathdoc},
     volume = {90},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a14/}
}
TY  - JOUR
AU  - D. O. Sinitsyn
TI  - Asymptotic Hamiltonian Reduction for Geodesics on Deformed Spheres and the Funk--Minkowski Transform
JO  - Matematičeskie zametki
PY  - 2011
SP  - 474
EP  - 477
VL  - 90
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a14/
LA  - ru
ID  - MZM_2011_90_3_a14
ER  - 
%0 Journal Article
%A D. O. Sinitsyn
%T Asymptotic Hamiltonian Reduction for Geodesics on Deformed Spheres and the Funk--Minkowski Transform
%J Matematičeskie zametki
%D 2011
%P 474-477
%V 90
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a14/
%G ru
%F MZM_2011_90_3_a14
D. O. Sinitsyn. Asymptotic Hamiltonian Reduction for Geodesics on Deformed Spheres and the Funk--Minkowski Transform. Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 474-477. http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a14/

[1] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, v. 1–3, URSS, M., 2001 | MR | Zbl

[2] V. L. Golo, D. O. Sinitsyn, Pisma v EChAYa, 5:3 (2008), 473–478

[3] I. M. Gelfand, S. G. Gindikin, M. I. Graev, Izbrannye zadachi integralnoi geometrii, Dobrosvet, M., 2010 | MR | Zbl

[4] H. Poincaré, Trans. Amer. Math. Soc., 6:3 (1905), 237–274 | DOI | MR | Zbl

[5] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, URSS, M., 2003 | MR | Zbl

[6] A. I. Neishtadt, PMM, 48:2 (1984), 197–204 | MR

[7] J. Brüning, S. Yu. Dobrokhotov, K. V. Pankrashkin, Russ. J. Math. Phys., 9:1 (2002), 14–49 | MR | Zbl

[8] D. V. Treschev, Reg. khaot. din., 2:3-4 (1997), 9–20 | MR | Zbl

[9] D. V. Treschev, Vvedenie v teoriyu vozmuschenii gamiltonovykh sistem, Biblioteka studenta-matematika, 6, Fazis, M., 1998 | MR

[10] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 3, VINITI, M., 1985, 5–290 | MR | Zbl