On the Mean Values of the Function~$\tau_k(n)$ in Sequences of Natural Numbers
Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 454-463.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an asymptotic formula for the mean value of the function $\tau_k(n)$, which is the number of solutions of the equation $x_1\dotsb x_k=n$ in natural numbers $x_1,\dots,x_k$, in some special sequences of natural numbers.
Keywords: sequence of natural numbers, trigonometric sum, number system of base $q$, complex-valued function, inequality of the large sieve.
@article{MZM_2011_90_3_a10,
     author = {K. M. Eminyan},
     title = {On the {Mean} {Values} of the {Function~}$\tau_k(n)$ in {Sequences} of {Natural} {Numbers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {454--463},
     publisher = {mathdoc},
     volume = {90},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a10/}
}
TY  - JOUR
AU  - K. M. Eminyan
TI  - On the Mean Values of the Function~$\tau_k(n)$ in Sequences of Natural Numbers
JO  - Matematičeskie zametki
PY  - 2011
SP  - 454
EP  - 463
VL  - 90
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a10/
LA  - ru
ID  - MZM_2011_90_3_a10
ER  - 
%0 Journal Article
%A K. M. Eminyan
%T On the Mean Values of the Function~$\tau_k(n)$ in Sequences of Natural Numbers
%J Matematičeskie zametki
%D 2011
%P 454-463
%V 90
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a10/
%G ru
%F MZM_2011_90_3_a10
K. M. Eminyan. On the Mean Values of the Function~$\tau_k(n)$ in Sequences of Natural Numbers. Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 454-463. http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a10/

[1] A. O. Gelfond, “Sur les nombres qui ont des propriétés additives et multiplicatives données”, Acta Arith., 13 (1968), 259–265 | MR | Zbl

[2] K. M. Eminyan, “O probleme delitelei Dirikhle v nekotorykh posledovatelnostyakh naturalnykh chisel”, Izv. AN SSSR. Ser. matem., 55:3 (1991), 680–686 | MR | Zbl

[3] G. Montgomeri, Multiplikativnaya teoriya chisel, Mir, M., 1974 | MR | Zbl

[4] I. M. Vinogradov, Osnovy teorii chisel, Nauka, M., 1981 | MR | Zbl

[5] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1975 | MR | Zbl