On the Mean Values of the Function $\tau_k(n)$ in Sequences of Natural Numbers
Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 454-463
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain an asymptotic formula for the mean value of the function $\tau_k(n)$, which is the number of solutions of the equation $x_1\dotsb x_k=n$ in natural numbers $x_1,\dots,x_k$, in some special sequences of natural numbers.
Keywords:
sequence of natural numbers, trigonometric sum, number system of base $q$, complex-valued function, inequality of the large sieve.
@article{MZM_2011_90_3_a10,
author = {K. M. Eminyan},
title = {On the {Mean} {Values} of the {Function~}$\tau_k(n)$ in {Sequences} of {Natural} {Numbers}},
journal = {Matemati\v{c}eskie zametki},
pages = {454--463},
year = {2011},
volume = {90},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a10/}
}
K. M. Eminyan. On the Mean Values of the Function $\tau_k(n)$ in Sequences of Natural Numbers. Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 454-463. http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a10/
[1] A. O. Gelfond, “Sur les nombres qui ont des propriétés additives et multiplicatives données”, Acta Arith., 13 (1968), 259–265 | MR | Zbl
[2] K. M. Eminyan, “O probleme delitelei Dirikhle v nekotorykh posledovatelnostyakh naturalnykh chisel”, Izv. AN SSSR. Ser. matem., 55:3 (1991), 680–686 | MR | Zbl
[3] G. Montgomeri, Multiplikativnaya teoriya chisel, Mir, M., 1974 | MR | Zbl
[4] I. M. Vinogradov, Osnovy teorii chisel, Nauka, M., 1981 | MR | Zbl
[5] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1975 | MR | Zbl