On the Properties of the $Q$-Integral
Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 340-350.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Titchmarsh $Q$-integral, its generalization, and its elementary properties are studied; integrability criteria on sets of finite measure are obtained.
Keywords: $Q$-integral, $A$-integral, integrability criterion, Kurzweil–Henstock integral, Fourier series, conjugate trigonometric series.
Mots-clés : Lebesgue criterion
@article{MZM_2011_90_3_a1,
     author = {M. P. Efimova},
     title = {On the {Properties} of the $Q${-Integral}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {340--350},
     publisher = {mathdoc},
     volume = {90},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a1/}
}
TY  - JOUR
AU  - M. P. Efimova
TI  - On the Properties of the $Q$-Integral
JO  - Matematičeskie zametki
PY  - 2011
SP  - 340
EP  - 350
VL  - 90
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a1/
LA  - ru
ID  - MZM_2011_90_3_a1
ER  - 
%0 Journal Article
%A M. P. Efimova
%T On the Properties of the $Q$-Integral
%J Matematičeskie zametki
%D 2011
%P 340-350
%V 90
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a1/
%G ru
%F MZM_2011_90_3_a1
M. P. Efimova. On the Properties of the $Q$-Integral. Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 340-350. http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a1/

[1] E. C. Titchmarsh, “On conjugate functions”, Proc. London Math. Soc. (2), 29 (1929), 49–80 | DOI

[2] W. H. Young, “Konvergenzbedingungen für die verwandte Reihe einer Fouriershen Reihe”, Münchener Sitzungsberichte, 41 (1911), 261–371 | Zbl

[3] N. Lusin, “Sur la convergence des séries trigonométriques de Fourier”, Compt. Rend. Acad. Sci. (Paris), 156 (1913), 1655–1658 | Zbl

[4] I. I. Privalov, “Integral Cauchy”, Izv. un-ta, fiz.-matem. fak., Saratov, 1 (1918), 1–94

[5] A. Kolmogoroff, “Sur les fonctions harmoniques conjuguées et les séries de Fourier”, Fund. Math., 7 (1925), 24–29 | Zbl

[6] T. P. Lukashenko, “$A$-integral i ego primenenie v issledovaniyakh P. L. Ulyanova i drugikh matematikov”, Izv. vuzov. Matem., 2008, no. 5, 77–82 | MR | Zbl

[7] P. L. Ulyanov, “Nekotorye voprosy $A$-integrirovaniya”, Dokl. AN SSSR, 102:6 (1955), 1077–1080 | MR | Zbl

[8] P. L. Ulyanov, “$A$-integral i ego primenenie k teorii trigonometricheskikh ryadov”, UMN, 10:1 (1955), 189–191

[9] P. L. Ulyanov, “$A$-integral i sopryazhennye funktsii”, Matematika. Tom VIII, Uch. zapiski Mosk. gos. un-ta, 181, Izd-vo Mosk. un-ta, M., 1956, 139–157 | MR

[10] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[11] T. P. Lukashenko, “Ob $A$-integriruemosti funktsii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1982, no. 5, 59–63 | MR | Zbl

[12] R. Bianconi, “On the convergence of the integrals of a truncated Henstock–Kurzweil integrable function”, Real Anal. Exchange, 23:1 (1997/98), 247–250 | MR | Zbl

[13] M. I. Dyachenko, P. L. Ulyanov, Mera i integral, Universitetskii uchebnik, Faktorial, M., 1998