On the Solvability of Initial Boundary-Value Problems for a Class of Operator-Differential Equations of Third Order
Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 323-339.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sufficient conditions for the regular solvability of initial boundary-value problems for a class of operator-differential equations of third order with variable coefficients on the semiaxis. These conditions are expressed only in terms of the operator coefficients of the equations under study. We obtain estimates of the norms of intermediate derivative operators via the discontinuous principal parts of the equations and also find relations between these estimates and the conditions for regular solvability.
Keywords: operator-differential equation, self-adjoint operator, initial boundary-value problem, Hilbert space, Banach space, polynomial operator pencil.
Mots-clés : Fourier transform
@article{MZM_2011_90_3_a0,
     author = {A. R. Aliev},
     title = {On the {Solvability} of {Initial} {Boundary-Value} {Problems} for a {Class} of {Operator-Differential} {Equations} of {Third} {Order}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--339},
     publisher = {mathdoc},
     volume = {90},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a0/}
}
TY  - JOUR
AU  - A. R. Aliev
TI  - On the Solvability of Initial Boundary-Value Problems for a Class of Operator-Differential Equations of Third Order
JO  - Matematičeskie zametki
PY  - 2011
SP  - 323
EP  - 339
VL  - 90
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a0/
LA  - ru
ID  - MZM_2011_90_3_a0
ER  - 
%0 Journal Article
%A A. R. Aliev
%T On the Solvability of Initial Boundary-Value Problems for a Class of Operator-Differential Equations of Third Order
%J Matematičeskie zametki
%D 2011
%P 323-339
%V 90
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a0/
%G ru
%F MZM_2011_90_3_a0
A. R. Aliev. On the Solvability of Initial Boundary-Value Problems for a Class of Operator-Differential Equations of Third Order. Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 323-339. http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a0/

[1] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, T. 1, Mir, M., 1971 | MR | Zbl

[2] S. Agmon, L. Nirenberg, “Properties of solutions of ordinary differential equations in Banach space”, Comm. Pure Appl. Math., 16:2 (1963), 121–239 | DOI | MR | Zbl

[3] M. G. Gasymov, “K teorii polinomialnykh operatornykh puchkov”, Dokl. AN SSSR, 199:4 (1971), 747–750 | MR | Zbl

[4] M. G. Gasymov, “O kratnoi polnote chasti sobstvennykh i proisoedinennykh vektorov polinomialnykh operatornykh puchkov”, Izv. AN ArmSSR. Ser. matem., 6:2-3 (1971), 131–147 | MR | Zbl

[5] A. G. Kostyuchenko, A. A. Shkalikov, “Samosopryazhennye kvadratichnye puchki operatorov i ellipticheskie zadachi”, Funkts. analiz i ego pril., 17:2 (1983), 38–61 | MR | Zbl

[6] S. S. Mirzoev, “O kratnoi polnote kornevykh vektorov polinomialnykh operatornykh puchkov, otvechayuschikh kraevym zadacham na poluosi”, Funkts. analiz i ego pril., 17:2 (1983), 84–85 | MR | Zbl

[7] S. S. Mirzoev, “Usloviya korrektnoi razreshimosti kraevykh zadach dlya operatorno-differentsialnykh uravnenii”, Dokl. AN SSSR, 273:2 (1983), 292–295 | MR | Zbl

[8] A. A. Shkalikov, “Silno dempfirovannye puchki operatorov i razreshimost sootvetstvuyuschikh operatorno-differentsialnykh uravnenii”, Matem. sb., 135:1 (1988), 96–118 | MR | Zbl

[9] A. A. Shkalikov, “Ellipticheskie uravneniya v gilbertovom prostranstve i spektralnye zadachi, svyazannye s nimi”, Tr. sem. im. I. G. Petrovskogo, 14, Izd-vo Mosk. un-ta, M., 1989, 140–224 | MR | Zbl

[10] M. G. Gasymov, S. S. Mirzoev, “O razreshimosti kraevykh zadach dlya operatorno-differentsialnykh uravnenii ellipticheskogo tipa vtorogo poryadka”, Differents. uravneniya, 28:4 (1992), 651–661 | MR | Zbl

[11] A. R. Aliev, O korrektnoi razreshimosti kraevykh zadach dlya operatorno-differentsialnykh uravnenii s razryvnym koeffitsientom, Dis. $\dots$ kand. fiz.-matem. nauk, BGU, Baku, 1998

[12] N. V. Artamonov, “Otsenki reshenii nekotorykh klassov differentsialnykh uravnenii vtorogo poryadka v gilbertovom prostranstve”, Matem. sb., 194:8 (2003), 3–12 | MR | Zbl

[13] A. R. Aliev, “Kraevye zadachi dlya odnogo klassa operatorno-differentsialnykh uravnenii vysokogo poryadka s peremennymi koeffitsientami”, Matem. zametki, 74:6 (2003), 803–814 | MR | Zbl

[14] S. B. Stechkin, “Nailuchshee priblizhenie lineinykh operatorov”, Matem. zametki, 1:2 (1967), 137–148 | MR | Zbl

[15] L. V. Taikov, “Neravenstva tipa Kolmogorova i nailuchshie formuly chislennogo differentsirovaniya”, Matem. zametki, 4:2 (1968), 233–238 | MR | Zbl

[16] V. N. Gabushin, “O nailuchshem priblizhenii operatora differentsirovaniya na polupryamoi”, Matem. zametki, 6:5 (1969), 573–582 | MR | Zbl