Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_90_3_a0, author = {A. R. Aliev}, title = {On the {Solvability} of {Initial} {Boundary-Value} {Problems} for a {Class} of {Operator-Differential} {Equations} of {Third} {Order}}, journal = {Matemati\v{c}eskie zametki}, pages = {323--339}, publisher = {mathdoc}, volume = {90}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a0/} }
TY - JOUR AU - A. R. Aliev TI - On the Solvability of Initial Boundary-Value Problems for a Class of Operator-Differential Equations of Third Order JO - Matematičeskie zametki PY - 2011 SP - 323 EP - 339 VL - 90 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a0/ LA - ru ID - MZM_2011_90_3_a0 ER -
A. R. Aliev. On the Solvability of Initial Boundary-Value Problems for a Class of Operator-Differential Equations of Third Order. Matematičeskie zametki, Tome 90 (2011) no. 3, pp. 323-339. http://geodesic.mathdoc.fr/item/MZM_2011_90_3_a0/
[1] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, T. 1, Mir, M., 1971 | MR | Zbl
[2] S. Agmon, L. Nirenberg, “Properties of solutions of ordinary differential equations in Banach space”, Comm. Pure Appl. Math., 16:2 (1963), 121–239 | DOI | MR | Zbl
[3] M. G. Gasymov, “K teorii polinomialnykh operatornykh puchkov”, Dokl. AN SSSR, 199:4 (1971), 747–750 | MR | Zbl
[4] M. G. Gasymov, “O kratnoi polnote chasti sobstvennykh i proisoedinennykh vektorov polinomialnykh operatornykh puchkov”, Izv. AN ArmSSR. Ser. matem., 6:2-3 (1971), 131–147 | MR | Zbl
[5] A. G. Kostyuchenko, A. A. Shkalikov, “Samosopryazhennye kvadratichnye puchki operatorov i ellipticheskie zadachi”, Funkts. analiz i ego pril., 17:2 (1983), 38–61 | MR | Zbl
[6] S. S. Mirzoev, “O kratnoi polnote kornevykh vektorov polinomialnykh operatornykh puchkov, otvechayuschikh kraevym zadacham na poluosi”, Funkts. analiz i ego pril., 17:2 (1983), 84–85 | MR | Zbl
[7] S. S. Mirzoev, “Usloviya korrektnoi razreshimosti kraevykh zadach dlya operatorno-differentsialnykh uravnenii”, Dokl. AN SSSR, 273:2 (1983), 292–295 | MR | Zbl
[8] A. A. Shkalikov, “Silno dempfirovannye puchki operatorov i razreshimost sootvetstvuyuschikh operatorno-differentsialnykh uravnenii”, Matem. sb., 135:1 (1988), 96–118 | MR | Zbl
[9] A. A. Shkalikov, “Ellipticheskie uravneniya v gilbertovom prostranstve i spektralnye zadachi, svyazannye s nimi”, Tr. sem. im. I. G. Petrovskogo, 14, Izd-vo Mosk. un-ta, M., 1989, 140–224 | MR | Zbl
[10] M. G. Gasymov, S. S. Mirzoev, “O razreshimosti kraevykh zadach dlya operatorno-differentsialnykh uravnenii ellipticheskogo tipa vtorogo poryadka”, Differents. uravneniya, 28:4 (1992), 651–661 | MR | Zbl
[11] A. R. Aliev, O korrektnoi razreshimosti kraevykh zadach dlya operatorno-differentsialnykh uravnenii s razryvnym koeffitsientom, Dis. $\dots$ kand. fiz.-matem. nauk, BGU, Baku, 1998
[12] N. V. Artamonov, “Otsenki reshenii nekotorykh klassov differentsialnykh uravnenii vtorogo poryadka v gilbertovom prostranstve”, Matem. sb., 194:8 (2003), 3–12 | MR | Zbl
[13] A. R. Aliev, “Kraevye zadachi dlya odnogo klassa operatorno-differentsialnykh uravnenii vysokogo poryadka s peremennymi koeffitsientami”, Matem. zametki, 74:6 (2003), 803–814 | MR | Zbl
[14] S. B. Stechkin, “Nailuchshee priblizhenie lineinykh operatorov”, Matem. zametki, 1:2 (1967), 137–148 | MR | Zbl
[15] L. V. Taikov, “Neravenstva tipa Kolmogorova i nailuchshie formuly chislennogo differentsirovaniya”, Matem. zametki, 4:2 (1968), 233–238 | MR | Zbl
[16] V. N. Gabushin, “O nailuchshem priblizhenii operatora differentsirovaniya na polupryamoi”, Matem. zametki, 6:5 (1969), 573–582 | MR | Zbl