Bifurcation Problems for Equations of Elliptic Type with Discontinuous Nonlinearities
Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 280-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the existence of semiregular solutions to the main boundary-value problems for second-order equations of elliptic type with a spectral parameter and discontinuous nonlinearities. A variational method is used to obtain the theorem on the existence of solutions and properties of the “separating” set for the problems under consideration. The results obtained are applied to the Goldshtik problem.
Keywords: second-order equation of elliptic type, bifurcation problem, semiregular solution, Carathéodory function, Dirichlet boundary condition, Neumann boundary condition.
@article{MZM_2011_90_2_a9,
     author = {D. K. Potapov},
     title = {Bifurcation {Problems} for {Equations} of {Elliptic} {Type} with {Discontinuous} {Nonlinearities}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {280--284},
     publisher = {mathdoc},
     volume = {90},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a9/}
}
TY  - JOUR
AU  - D. K. Potapov
TI  - Bifurcation Problems for Equations of Elliptic Type with Discontinuous Nonlinearities
JO  - Matematičeskie zametki
PY  - 2011
SP  - 280
EP  - 284
VL  - 90
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a9/
LA  - ru
ID  - MZM_2011_90_2_a9
ER  - 
%0 Journal Article
%A D. K. Potapov
%T Bifurcation Problems for Equations of Elliptic Type with Discontinuous Nonlinearities
%J Matematičeskie zametki
%D 2011
%P 280-284
%V 90
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a9/
%G ru
%F MZM_2011_90_2_a9
D. K. Potapov. Bifurcation Problems for Equations of Elliptic Type with Discontinuous Nonlinearities. Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 280-284. http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a9/

[1] M. A. Krasnoselskii, A. V. Pokrovskii, “Pravilnye resheniya uravnenii s razryvnymi nelineinostyami”, Dokl. AN SSSR, 226:3 (1976), 506–509 | MR | Zbl

[2] V. N. Pavlenko, Uravneniya i variatsionnye neravenstva s razryvnymi nelineinostyami, Dis. $\dots$ dokt. fiz.-matem. nauk, Chelyabinsk, 1995

[3] D. K. Potapov, “O “razdelyayuschem” mnozhestve dlya uravnenii ellipticheskogo tipa vysokogo poryadka s razryvnymi nelineinostyami”, Differents. uravneniya, 46:3 (2010), 451–453 | Zbl

[4] M. A. Goldshtik, “Matematicheskaya model otryvnykh techenii neszhimaemoi zhidkosti”, Dokl. AN SSSR. Ser. fizich., 147:6 (1962), 1310–1313 | Zbl

[5] V. N. Pavlenko, D. K. Potapov, “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii s razryvnymi operatorami”, Sib. matem. zhurn., 42:4 (2001), 911–919 | MR | Zbl

[6] D. K. Potapov, Zadachi so spektralnym parametrom i razryvnoi nelineinostyu, IBP, SPb., 2008

[7] D. K. Potapov, “Ob odnoi otsenke sverkhu velichiny bifurkatsionnogo parametra v zadachakh na sobstvennye znacheniya dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Differents. uravneniya, 44:5 (2008), 715–716 | MR | Zbl

[8] S. A. Marano, “Elliptic eigenvalue problems with highly discontinuous nonlinearities”, Proc. Amer. Math. Soc., 125:10 (1997), 2953–2961 | DOI | MR | Zbl

[9] D. K. Potapov, “Matematicheskaya model otryvnykh techenii neszhimaemoi zhidkosti”, Izv. RAEN. Ser. MMMIU, 8:3-4 (2004), 163–170

[10] D. K. Potapov, “Nepreryvnye approksimatsii zadachi Goldshtika”, Matem. zametki, 87:2 (2010), 262–266 | MR | Zbl