An Invariant of Links in the Thickened Torus
Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 242-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

An invariant of links with two and more components in the thickened torus is constructed; the invariant depends on several variables. The construction uses Kauffman's formal theory, which is based on Dehn's representation of knot groups. This invariant is a natural generalization of a polynomial $z$ constructed by Zenkina and Manturov.
Keywords: link in the thickened torus, virtual knot, invariant of links, link diagram, regular link diagram, shadow of a link diagram, Kaufmann's formal theory, Dehn's presentation.
@article{MZM_2011_90_2_a6,
     author = {M. V. Zenkina},
     title = {An {Invariant} of {Links} in the {Thickened} {Torus}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {242--253},
     publisher = {mathdoc},
     volume = {90},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a6/}
}
TY  - JOUR
AU  - M. V. Zenkina
TI  - An Invariant of Links in the Thickened Torus
JO  - Matematičeskie zametki
PY  - 2011
SP  - 242
EP  - 253
VL  - 90
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a6/
LA  - ru
ID  - MZM_2011_90_2_a6
ER  - 
%0 Journal Article
%A M. V. Zenkina
%T An Invariant of Links in the Thickened Torus
%J Matematičeskie zametki
%D 2011
%P 242-253
%V 90
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a6/
%G ru
%F MZM_2011_90_2_a6
M. V. Zenkina. An Invariant of Links in the Thickened Torus. Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 242-253. http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a6/

[1] L. H. Kauffman, Formal Knot Theory, Mathematical Notes, 30, Princeton Univ. Press, Princeton, NJ, 1983 | MR | Zbl

[2] L. H. Kauffman, “Virtual knot theory”, European J. Combin., 20:7 (1999), 663–690 | DOI | MR | Zbl

[3] V. O. Manturov, Teoriya uzlov, RKhD, M.–Izhevsk, 2005

[4] V. O. Manturov, “O polinomialnykh invariantakh virtualnykh zatseplenii”, Tr. MMO, 65, no. 1, Izd-vo Mosk. un-ta, M., 2004, 175–190 | MR | Zbl

[5] S. A. Grishanov, V. R. Meshkov, V. A. Vassiliev, “Recognizing textile structures by finite type knot invariants”, J. Knot Theory Ramifications, 18:2 (2009), 209–235 | DOI | MR | Zbl

[6] S. A. Grishanov, V. A. Vassiliev, “Invariants of links in $3$-manifolds and splitting problem of textile structures”, J. Knot Theory Ramifications (to appear)

[7] H. R. Morton, S. Grishanov, “Doubly periodic textile patterns”, J. Knot Theory Ramifications, 18:12 (2009), 1597–1622 | DOI | MR | Zbl

[8] M. V. Zenkina, V. O. Manturov, “Invariant zatseplenii v utolschennom tore”, Geometriya i topologiya. 11, Zap. nauchn. sem. POMI, 372, POMI, SPb., 2009, 5–18 | MR

[9] T. Ohtsuki, Quantum Invariants. A Study of Knots, $3$-Manifolds, and Their Sets, Ser. Knots Everything, 29, World Sci. Publ., River Edge, NJ, 2002 | MR | Zbl