Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_90_2_a6, author = {M. V. Zenkina}, title = {An {Invariant} of {Links} in the {Thickened} {Torus}}, journal = {Matemati\v{c}eskie zametki}, pages = {242--253}, publisher = {mathdoc}, volume = {90}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a6/} }
M. V. Zenkina. An Invariant of Links in the Thickened Torus. Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 242-253. http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a6/
[1] L. H. Kauffman, Formal Knot Theory, Mathematical Notes, 30, Princeton Univ. Press, Princeton, NJ, 1983 | MR | Zbl
[2] L. H. Kauffman, “Virtual knot theory”, European J. Combin., 20:7 (1999), 663–690 | DOI | MR | Zbl
[3] V. O. Manturov, Teoriya uzlov, RKhD, M.–Izhevsk, 2005
[4] V. O. Manturov, “O polinomialnykh invariantakh virtualnykh zatseplenii”, Tr. MMO, 65, no. 1, Izd-vo Mosk. un-ta, M., 2004, 175–190 | MR | Zbl
[5] S. A. Grishanov, V. R. Meshkov, V. A. Vassiliev, “Recognizing textile structures by finite type knot invariants”, J. Knot Theory Ramifications, 18:2 (2009), 209–235 | DOI | MR | Zbl
[6] S. A. Grishanov, V. A. Vassiliev, “Invariants of links in $3$-manifolds and splitting problem of textile structures”, J. Knot Theory Ramifications (to appear)
[7] H. R. Morton, S. Grishanov, “Doubly periodic textile patterns”, J. Knot Theory Ramifications, 18:12 (2009), 1597–1622 | DOI | MR | Zbl
[8] M. V. Zenkina, V. O. Manturov, “Invariant zatseplenii v utolschennom tore”, Geometriya i topologiya. 11, Zap. nauchn. sem. POMI, 372, POMI, SPb., 2009, 5–18 | MR
[9] T. Ohtsuki, Quantum Invariants. A Study of Knots, $3$-Manifolds, and Their Sets, Ser. Knots Everything, 29, World Sci. Publ., River Edge, NJ, 2002 | MR | Zbl