Sufficiency of Polyhedral Surfaces in the Modulus Method and Removable Sets
Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 216-230

Voir la notice de l'article provenant de la source Math-Net.Ru

The sufficiency of a family of polyhedral surfaces for calculating the modulus of a family of surfaces separating the plates of a condenser in an open set is proved. Geometric properties of removable sets for this modulus are also determined.
Keywords: modulus of a family of surfaces, surface separating plates of a condenser, removable set for a modulus of a family of surfaces, polyhedral surface, Borel function, Hölder inequality.
Mots-clés : condenser, Lebesgue and Hausdorff measure
@article{MZM_2011_90_2_a4,
     author = {Yu. V. Dymchenko and V. A. Shlyk},
     title = {Sufficiency of {Polyhedral} {Surfaces} in the {Modulus} {Method} and {Removable} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {216--230},
     publisher = {mathdoc},
     volume = {90},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a4/}
}
TY  - JOUR
AU  - Yu. V. Dymchenko
AU  - V. A. Shlyk
TI  - Sufficiency of Polyhedral Surfaces in the Modulus Method and Removable Sets
JO  - Matematičeskie zametki
PY  - 2011
SP  - 216
EP  - 230
VL  - 90
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a4/
LA  - ru
ID  - MZM_2011_90_2_a4
ER  - 
%0 Journal Article
%A Yu. V. Dymchenko
%A V. A. Shlyk
%T Sufficiency of Polyhedral Surfaces in the Modulus Method and Removable Sets
%J Matematičeskie zametki
%D 2011
%P 216-230
%V 90
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a4/
%G ru
%F MZM_2011_90_2_a4
Yu. V. Dymchenko; V. A. Shlyk. Sufficiency of Polyhedral Surfaces in the Modulus Method and Removable Sets. Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 216-230. http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a4/