The Greatest Possible Lower Type of Entire Functions of Order $\rho\in(0;1)$ with Zeros of Fixed $\rho$-Densities
Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 199-215
Voir la notice de l'article provenant de la source Math-Net.Ru
For $\rho\in(0;1)$, we obtain the supremum of lower $\rho$-types of entire functions whose sequence of roots has given lower and upper densities for the order $\rho$.
Keywords:
entire function, greatest lower type of an entire function, zero distribution density, arithmetic progression.
@article{MZM_2011_90_2_a3,
author = {G. G. Braichev and O. V. Sherstjukova},
title = {The {Greatest} {Possible} {Lower} {Type} of {Entire} {Functions} of {Order} $\rho\in(0;1)$ with {Zeros} of {Fixed} $\rho${-Densities}},
journal = {Matemati\v{c}eskie zametki},
pages = {199--215},
publisher = {mathdoc},
volume = {90},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a3/}
}
TY - JOUR AU - G. G. Braichev AU - O. V. Sherstjukova TI - The Greatest Possible Lower Type of Entire Functions of Order $\rho\in(0;1)$ with Zeros of Fixed $\rho$-Densities JO - Matematičeskie zametki PY - 2011 SP - 199 EP - 215 VL - 90 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a3/ LA - ru ID - MZM_2011_90_2_a3 ER -
%0 Journal Article %A G. G. Braichev %A O. V. Sherstjukova %T The Greatest Possible Lower Type of Entire Functions of Order $\rho\in(0;1)$ with Zeros of Fixed $\rho$-Densities %J Matematičeskie zametki %D 2011 %P 199-215 %V 90 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a3/ %G ru %F MZM_2011_90_2_a3
G. G. Braichev; O. V. Sherstjukova. The Greatest Possible Lower Type of Entire Functions of Order $\rho\in(0;1)$ with Zeros of Fixed $\rho$-Densities. Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 199-215. http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a3/