The Greatest Possible Lower Type of Entire Functions of Order $\rho\in(0;1)$ with Zeros of Fixed $\rho$-Densities
Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 199-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

For $\rho\in(0;1)$, we obtain the supremum of lower $\rho$-types of entire functions whose sequence of roots has given lower and upper densities for the order $\rho$.
Keywords: entire function, greatest lower type of an entire function, zero distribution density, arithmetic progression.
@article{MZM_2011_90_2_a3,
     author = {G. G. Braichev and O. V. Sherstjukova},
     title = {The {Greatest} {Possible} {Lower} {Type} of {Entire} {Functions} of {Order} $\rho\in(0;1)$ with {Zeros} of {Fixed} $\rho${-Densities}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {199--215},
     publisher = {mathdoc},
     volume = {90},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a3/}
}
TY  - JOUR
AU  - G. G. Braichev
AU  - O. V. Sherstjukova
TI  - The Greatest Possible Lower Type of Entire Functions of Order $\rho\in(0;1)$ with Zeros of Fixed $\rho$-Densities
JO  - Matematičeskie zametki
PY  - 2011
SP  - 199
EP  - 215
VL  - 90
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a3/
LA  - ru
ID  - MZM_2011_90_2_a3
ER  - 
%0 Journal Article
%A G. G. Braichev
%A O. V. Sherstjukova
%T The Greatest Possible Lower Type of Entire Functions of Order $\rho\in(0;1)$ with Zeros of Fixed $\rho$-Densities
%J Matematičeskie zametki
%D 2011
%P 199-215
%V 90
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a3/
%G ru
%F MZM_2011_90_2_a3
G. G. Braichev; O. V. Sherstjukova. The Greatest Possible Lower Type of Entire Functions of Order $\rho\in(0;1)$ with Zeros of Fixed $\rho$-Densities. Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 199-215. http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a3/

[1] B. Ya. Levin, Lectures on Entire Functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[2] A. A. Goldberg, “Integral po poluadditivnoi mere i ego prilozhenie k teorii tselykh funktsii. III”, Matem. sb., 65:3 (1964), 414–453 | MR | Zbl

[3] R. P. Boas, jr., Entire Functions, Pure Appl. Math., 5, Academic Press, New York, 1954 | MR | Zbl

[4] G. G. Braichev, V. B. Sherstyukov, “Svyaz tipov tseloi funktsii konechnogo poryadka s plotnostyami ee nulei”, Sb. trudov XIV Mezhd. konf. “Matematika. Ekonomika. Obrazovanie”, RGU, Rostov-na-Donu, 2006, 52–55

[5] G. G. Braichev, Vvedenie v teoriyu rosta vypuklykh i tselykh funktsii, Prometei, M., 2005

[6] A. Yu. Popov, “Naimenshii vozmozhnyi tip pri poryadke $\rho1$ kanonicheskikh proizvedenii s polozhitelnymi nulyami zadannoi verkhnei $\rho$-plotnosti”, Vest. Mosk. un-ta. Ser. 1. Matem., mekh., 2005, no. 1, 31–36 | MR | Zbl

[7] G. G. Braichev, V. B. Sherstyukov, “O naimenshem vozmozhnom tipe tselykh funktsii poryadka $\rho\in(0,1)$ s polozhitelnymi nulyami”, Izv. RAN. Ser. matem., 75:1 (2011), 3–28

[8] G. G. Braichev, O. V. Sherstyukova, “Ob odnoi ekstremalnoi zadache dlya nizhnego tipa tseloi funktsii poryadka $\rho\in(0;1)$”, Issledovaniya po matematicheskomu analizu, Matematicheskii forum, 3, Vladikavkaz, VNTs RAN i RSO-A, 2009, 48–54