The Cauchy Problem for Certain Systems of Operator-Differential Equations of Arbitrary Order in Locally Convex Spaces
Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 183-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe an analog of the Cauchy–Kovalevskaya sufficient conditions for the analytic solvability of the Cauchy problem for systems of operator-differential equations of arbitrary order in locally convex spaces; this analog is stated in terms of the order and type of the linear operator.
Keywords: Cauchy problem, operator-differential equation, locally convex space, linear operator, polycylinder, multiple power series
Mots-clés : Cauchy–Kovalevskaya sufficient conditions, Cauchy–Hadamard formula.
@article{MZM_2011_90_2_a2,
     author = {N. A. Aksenov},
     title = {The {Cauchy} {Problem} for {Certain} {Systems} of {Operator-Differential} {Equations} of {Arbitrary} {Order} in {Locally} {Convex} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {183--198},
     publisher = {mathdoc},
     volume = {90},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a2/}
}
TY  - JOUR
AU  - N. A. Aksenov
TI  - The Cauchy Problem for Certain Systems of Operator-Differential Equations of Arbitrary Order in Locally Convex Spaces
JO  - Matematičeskie zametki
PY  - 2011
SP  - 183
EP  - 198
VL  - 90
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a2/
LA  - ru
ID  - MZM_2011_90_2_a2
ER  - 
%0 Journal Article
%A N. A. Aksenov
%T The Cauchy Problem for Certain Systems of Operator-Differential Equations of Arbitrary Order in Locally Convex Spaces
%J Matematičeskie zametki
%D 2011
%P 183-198
%V 90
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a2/
%G ru
%F MZM_2011_90_2_a2
N. A. Aksenov. The Cauchy Problem for Certain Systems of Operator-Differential Equations of Arbitrary Order in Locally Convex Spaces. Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 183-198. http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a2/

[1] Zh. Lere, L. Gording, T. Kotake, Zadacha Koshi. Uniformizatsiya i asimptoticheskoe razlozhenie resheniya lineinoi zadachi Koshi s golomorfnymi dannymi. Analogiya s teoriei asimptoticheskikh i priblizhennykh voln, Mir, M., 1967 | Zbl

[2] A. Tychonoff, “Théorèmes d'unicité pour l'équation de la chaleur”, Matem. sb., 42:2 (1935), 199–216 | Zbl

[3] I. G. Petrovskii, Izbrannye trudy. Sistemy uravnenii s chastnymi proizvodnymi. Algebraicheskaya geometriya, Nauka, M., 1986 | MR | Zbl

[4] I. M. Gelfand, G. E. Shilov, Nekotorye voprosy teorii differentsialnykh uravnenii, Obobschennye funktsii, 3, Fizmatgiz, M., 1958 | MR | Zbl

[5] Yu. A. Dubinskii, “Zadacha Koshi i psevdodifferentsialnye operatory v kompleksnoi oblasti”, UMN, 45:2 (1990), 115–142 | MR | Zbl

[6] Yu. A. Dubinskii, Zadacha Koshi v kompleksnoi oblasti, MEI, M., 1996

[7] V. P. Gromov, “Poryadok i tip lineinogo operatora i razlozhenie v ryad po sobstvennym funktsiyam”, Dokl. AN SSSR, 288:1 (1986), 27–31 | MR | Zbl

[8] V. P. Gromov, “Poryadok i tip operatora i tselye vektornoznachnye funktsii”, Uchenye zapiski laboratorii teorii funktsii i funktsionalnogo analiza OGU, 1999, no. 1, 6–23

[9] V. P. Gromov, S. N. Mishin, S. V. Panyushkin, Operatory konechnogo poryadka i differentsialno-operatornye uravneniya, OGU, Orel, 2009

[10] S. N. Mishin, “O poryadke i tipe operatora”, Dokl. RAN, 381:3 (2001), 309–312 | MR | Zbl

[11] S. N. Mishin, Operatory konechnogo poryadka v lokalno vypuklykh prostranstvakh i ikh primenenie, Dis. $\dots$ kand. fiz.-matem. nauk, OGU, Orel, 2002

[12] V. P. Gromov, “Analiticheskie resheniya differentsialno-operatornykh uravnenii v lokalno-vypuklykh prostranstvakh”, Dokl. RAN, 394:3 (2004), 305–308 | MR | Zbl

[13] N. A. Aksenov, “Ob odnom obobschenii zadachi Koshi dlya lineinogo differentsialno-operatornogo uravneniya pervogo poryadka”, Sovremennaya matematika i problemy matematicheskogo obrazovaniya, Materialy vserossiiskoi zaochnoi nauchno-prakticheskoi konferentsii, Izd-vo OGU, Orel, 2009, 29–35

[14] N. A. Aksenov, “Abstraktnaya zadacha Koshi dlya differentsialno-operatornogo uravneniya proizvolnogo poryadka s nachalnymi usloviyami, imeyuschimi odnoznachnoe sootnoshenie s poryadkom uravneniya”, Uchenye zapiski OGU. Ser. estestv., tekhn. i med. nauki, 2(32) (2009), 5–11

[15] N. A. Aksenov, “Ob odnom analoge zadachi Dirikhle dlya lineinogo differentsialno-operatornogo uravneniya vtorogo poryadka”, Sovremennye problemy matematiki, mekhaniki i ikh prilozhenii, Materialy mezhdunarodnoi konferentsii, posvyaschennoi 70-letiyu rektora MGU akademika V. A. Sadovnichego (30 marta–2 aprelya 2009 g.), Izd-vo “Universitetskaya kniga”, M., 2009, 15

[16] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. V 3 t., v. 1, Elementarnye funktsii, Fizmatlit, M., 2003 | MR | Zbl