Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_90_2_a1, author = {L. Accardi and F. M. Mukhamedov and M. Kh. Saburov}, title = {Uniqueness of {Quantum} {Markov} {Chains} {Associated} with an $XY${-Model} on a {Cayley} {Tree} of {Order~}$2$}, journal = {Matemati\v{c}eskie zametki}, pages = {168--182}, publisher = {mathdoc}, volume = {90}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a1/} }
TY - JOUR AU - L. Accardi AU - F. M. Mukhamedov AU - M. Kh. Saburov TI - Uniqueness of Quantum Markov Chains Associated with an $XY$-Model on a Cayley Tree of Order~$2$ JO - Matematičeskie zametki PY - 2011 SP - 168 EP - 182 VL - 90 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a1/ LA - ru ID - MZM_2011_90_2_a1 ER -
%0 Journal Article %A L. Accardi %A F. M. Mukhamedov %A M. Kh. Saburov %T Uniqueness of Quantum Markov Chains Associated with an $XY$-Model on a Cayley Tree of Order~$2$ %J Matematičeskie zametki %D 2011 %P 168-182 %V 90 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a1/ %G ru %F MZM_2011_90_2_a1
L. Accardi; F. M. Mukhamedov; M. Kh. Saburov. Uniqueness of Quantum Markov Chains Associated with an $XY$-Model on a Cayley Tree of Order~$2$. Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 168-182. http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a1/
[1] L. Akkardi, “O nekommutativnom markovskom svoistve”, Funkts. analiz i ego pril., 9:1 (1975), 1–8 | MR | Zbl
[2] L. Accardi, F. Fidaleo, “Entangled Markov chains”, Ann. Mat. Pura Appl. (4), 184:3 (2005), 327–346 | DOI | MR | Zbl
[3] L. Accardi, F. Fidaleo, “Non-homogeneous quantum Markov states and quantum Markov fields”, J. Funct. Anal., 200:2 (2003), 324–347 | DOI | MR | Zbl
[4] L. Accardi, F. Fidaleo, “Markov property – recent developments on the quantum Markov property”, Quantum Probability and Infinite Dimensional Analysis (Burg, 2001), QP–PQ: Quantum Probab. White Noise Anal., 15, World Sci. Publ., River Edge, NJ, 2003, 1–19 | MR | Zbl
[5] M. Ohya, D. Petz, Quantum Entropy and its Use, Texts Monogr. Phys., Springer-Verlag, Berlin, 1993 | MR | Zbl
[6] L. Accardi, F. Fidaleo, “Quantum Markov fields”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6:1 (2003), 123–138 | DOI | MR | Zbl
[7] L. Accardi, V. Liebscher, “Markovian KMS-states for one-dimensional spin chains”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2:4 (1999), 645–661 | DOI | MR | Zbl
[8] V. Liebscher, “Markovianity of quantum random fields in the $\mathscr B(\mathscr H)$ case”, Quantum Probability and Infinite Dimensional Analysis (Burg, 2001), QP–PQ: Quantum Probab. White Noise Anal., 15, World Sci. Publ., River Edge, NJ, 2003, 151–159 | MR | Zbl
[9] L. Accardi, A. Frigerio, “Markovian cocycles”, Proc. Roy. Irish Acad. Sect. A, 83:2 (1983), 251–263 | MR | Zbl
[10] L. Accardi, F. Fidaleo, F. Mukhamedov, “Markov states and chains on the CAR algebra”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 10:2 (2007), 165–183 | DOI | MR | Zbl
[11] C. J. Preston, Gibbs States on Countable Sets, Cambridge Tracts in Math., 68, Cambridge Univ. Press, London, 1974 | MR | Zbl
[12] A. Spătaru, “Construction of a Markov field on an infinite tree”, Adv. Math., 81:1 (1990), 105–116 | DOI | MR | Zbl
[13] F. Spitzer, “Markov random fields on an infinite tree”, Ann. Probab., 3:3 (1975), 387–398 | DOI | MR | Zbl
[14] L. Affleck, T. Kennedy, E. H. Lieb, H. Tasaki, “Valence bond ground states in isotropic quantum antiferromagnets”, Comm. Math. Phys., 115:3 (1988), 477–528 | DOI | MR
[15] M. Fannes, B. Nachtergaele, R. F. Werner, “Ground states of VBS models on Cayley trees”, J. Stat. Phys., 66:3-4 (1992), 939–973 | DOI | MR | Zbl
[16] L. Accardi, H. Ohno, F. Mukhamedov, “Quantum Markov fields on graphs”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 13:2 (2010), 165–189 | DOI | MR | Zbl
[17] F. M. Mukhamedov, “Ob algebrakh fon Neimana, sootvetstvuyuschikh translyatsionno-invariantnym gibbsovskim sostoyaniyam modeli Izinga na reshetke Bete”, TMF, 123:1 (2000), 88–93 | MR | Zbl
[18] F. M. Mukhamedov, “On a factor associated with the unordered phase of $\lambda$-model on a Cayley tree”, Rep. Math. Phys., 53:1 (2004), 1–18 | DOI | MR | Zbl
[19] F. Mukhamedov, U. Rozikov, “On Gibbs measures of models with competing ternary and binary interactions and corresponding von Neumann algebras”, J. Stat. Phys., 114:3-4 (2004), 825–848 ; “On Gibbs measures of models with competing ternary and binary interactions and corresponding von Neumann algebras II”, J. Stat. Phys., 119:1-2 (2005), 427–446 | DOI | MR | Zbl | DOI | MR | Zbl
[20] S. Zachary, “Countable state space Markov random fields and Markov chains on trees”, Ann. Probab., 11:4 (1983), 894–903 | DOI | MR | Zbl
[21] S. Zachary, “Bounded, attractive and repulsive Markov specifications on trees and on the one-dimensional lattice”, Stochastic Process. Appl., 20:2 (1985), 247–256 | DOI | MR | Zbl
[22] R. L. Dobrushin, “Opisanie sluchainogo polya pri pomoschi uslovnykh veroyatnostei i usloviya ego regulyarnosti”, TVP, 13:2 (1968), 201–229 | MR | Zbl
[23] H.-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter Stud. Math., 9, Walter de Gruyter, Berlin, 1988 | MR | Zbl
[24] L. Accardi, C. Cecchini, “Conditional expectations in von Neumann algebras and a theorem of Takesaki”, J. Funct. Anal., 45:2 (1982), 245–273 | DOI | MR | Zbl
[25] L. Accardi, “Cecchini's transition expectations and Markov chains”, Quantum Probability and Applications, IV (Rome, 1987), Lecture Notes in Math., 1396, Springer-Verlag, Berlin, 1989, 1–6 | DOI | MR | Zbl
[26] F. Mukhamedov, M. Saburov, “Phase transitions for $XY$-model on the Cayley tree of order three in quantum Markov chain scheme”, C. R. Math. Acad. Sci. Paris, 349:7-8 (2011), 425–428 | Zbl