Uniqueness of Quantum Markov Chains Associated with an $XY$-Model on a Cayley Tree of Order~$2$
Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 168-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose the construction of a quantum Markov chain that corresponds to a “forward” quantum Markov chain. In the given construction, the quantum Markov chain is defined as the limit of finite-dimensional states depending on the boundary conditions. A similar construction is widely used in the definition of Gibbs states in classical statistical mechanics. Using this construction, we study the quantum Markov chain associated with an $XY$-model on a Cayley tree. For this model, within the framework of the given construction, we prove the uniqueness of the quantum Markov chain, i.e., we show that the state is independent of the boundary conditions.
Mots-clés : quantum Markov chain, phase transition, quasiconditional expectation
Keywords: Cayley tree, $XY$-model, Gibbs state, graph, dynamical system, quasilocal algebra.
@article{MZM_2011_90_2_a1,
     author = {L. Accardi and F. M. Mukhamedov and M. Kh. Saburov},
     title = {Uniqueness of {Quantum} {Markov} {Chains} {Associated} with an $XY${-Model} on a {Cayley} {Tree} of {Order~}$2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {168--182},
     publisher = {mathdoc},
     volume = {90},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a1/}
}
TY  - JOUR
AU  - L. Accardi
AU  - F. M. Mukhamedov
AU  - M. Kh. Saburov
TI  - Uniqueness of Quantum Markov Chains Associated with an $XY$-Model on a Cayley Tree of Order~$2$
JO  - Matematičeskie zametki
PY  - 2011
SP  - 168
EP  - 182
VL  - 90
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a1/
LA  - ru
ID  - MZM_2011_90_2_a1
ER  - 
%0 Journal Article
%A L. Accardi
%A F. M. Mukhamedov
%A M. Kh. Saburov
%T Uniqueness of Quantum Markov Chains Associated with an $XY$-Model on a Cayley Tree of Order~$2$
%J Matematičeskie zametki
%D 2011
%P 168-182
%V 90
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a1/
%G ru
%F MZM_2011_90_2_a1
L. Accardi; F. M. Mukhamedov; M. Kh. Saburov. Uniqueness of Quantum Markov Chains Associated with an $XY$-Model on a Cayley Tree of Order~$2$. Matematičeskie zametki, Tome 90 (2011) no. 2, pp. 168-182. http://geodesic.mathdoc.fr/item/MZM_2011_90_2_a1/

[1] L. Akkardi, “O nekommutativnom markovskom svoistve”, Funkts. analiz i ego pril., 9:1 (1975), 1–8 | MR | Zbl

[2] L. Accardi, F. Fidaleo, “Entangled Markov chains”, Ann. Mat. Pura Appl. (4), 184:3 (2005), 327–346 | DOI | MR | Zbl

[3] L. Accardi, F. Fidaleo, “Non-homogeneous quantum Markov states and quantum Markov fields”, J. Funct. Anal., 200:2 (2003), 324–347 | DOI | MR | Zbl

[4] L. Accardi, F. Fidaleo, “Markov property – recent developments on the quantum Markov property”, Quantum Probability and Infinite Dimensional Analysis (Burg, 2001), QP–PQ: Quantum Probab. White Noise Anal., 15, World Sci. Publ., River Edge, NJ, 2003, 1–19 | MR | Zbl

[5] M. Ohya, D. Petz, Quantum Entropy and its Use, Texts Monogr. Phys., Springer-Verlag, Berlin, 1993 | MR | Zbl

[6] L. Accardi, F. Fidaleo, “Quantum Markov fields”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6:1 (2003), 123–138 | DOI | MR | Zbl

[7] L. Accardi, V. Liebscher, “Markovian KMS-states for one-dimensional spin chains”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2:4 (1999), 645–661 | DOI | MR | Zbl

[8] V. Liebscher, “Markovianity of quantum random fields in the $\mathscr B(\mathscr H)$ case”, Quantum Probability and Infinite Dimensional Analysis (Burg, 2001), QP–PQ: Quantum Probab. White Noise Anal., 15, World Sci. Publ., River Edge, NJ, 2003, 151–159 | MR | Zbl

[9] L. Accardi, A. Frigerio, “Markovian cocycles”, Proc. Roy. Irish Acad. Sect. A, 83:2 (1983), 251–263 | MR | Zbl

[10] L. Accardi, F. Fidaleo, F. Mukhamedov, “Markov states and chains on the CAR algebra”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 10:2 (2007), 165–183 | DOI | MR | Zbl

[11] C. J. Preston, Gibbs States on Countable Sets, Cambridge Tracts in Math., 68, Cambridge Univ. Press, London, 1974 | MR | Zbl

[12] A. Spătaru, “Construction of a Markov field on an infinite tree”, Adv. Math., 81:1 (1990), 105–116 | DOI | MR | Zbl

[13] F. Spitzer, “Markov random fields on an infinite tree”, Ann. Probab., 3:3 (1975), 387–398 | DOI | MR | Zbl

[14] L. Affleck, T. Kennedy, E. H. Lieb, H. Tasaki, “Valence bond ground states in isotropic quantum antiferromagnets”, Comm. Math. Phys., 115:3 (1988), 477–528 | DOI | MR

[15] M. Fannes, B. Nachtergaele, R. F. Werner, “Ground states of VBS models on Cayley trees”, J. Stat. Phys., 66:3-4 (1992), 939–973 | DOI | MR | Zbl

[16] L. Accardi, H. Ohno, F. Mukhamedov, “Quantum Markov fields on graphs”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 13:2 (2010), 165–189 | DOI | MR | Zbl

[17] F. M. Mukhamedov, “Ob algebrakh fon Neimana, sootvetstvuyuschikh translyatsionno-invariantnym gibbsovskim sostoyaniyam modeli Izinga na reshetke Bete”, TMF, 123:1 (2000), 88–93 | MR | Zbl

[18] F. M. Mukhamedov, “On a factor associated with the unordered phase of $\lambda$-model on a Cayley tree”, Rep. Math. Phys., 53:1 (2004), 1–18 | DOI | MR | Zbl

[19] F. Mukhamedov, U. Rozikov, “On Gibbs measures of models with competing ternary and binary interactions and corresponding von Neumann algebras”, J. Stat. Phys., 114:3-4 (2004), 825–848 ; “On Gibbs measures of models with competing ternary and binary interactions and corresponding von Neumann algebras II”, J. Stat. Phys., 119:1-2 (2005), 427–446 | DOI | MR | Zbl | DOI | MR | Zbl

[20] S. Zachary, “Countable state space Markov random fields and Markov chains on trees”, Ann. Probab., 11:4 (1983), 894–903 | DOI | MR | Zbl

[21] S. Zachary, “Bounded, attractive and repulsive Markov specifications on trees and on the one-dimensional lattice”, Stochastic Process. Appl., 20:2 (1985), 247–256 | DOI | MR | Zbl

[22] R. L. Dobrushin, “Opisanie sluchainogo polya pri pomoschi uslovnykh veroyatnostei i usloviya ego regulyarnosti”, TVP, 13:2 (1968), 201–229 | MR | Zbl

[23] H.-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter Stud. Math., 9, Walter de Gruyter, Berlin, 1988 | MR | Zbl

[24] L. Accardi, C. Cecchini, “Conditional expectations in von Neumann algebras and a theorem of Takesaki”, J. Funct. Anal., 45:2 (1982), 245–273 | DOI | MR | Zbl

[25] L. Accardi, “Cecchini's transition expectations and Markov chains”, Quantum Probability and Applications, IV (Rome, 1987), Lecture Notes in Math., 1396, Springer-Verlag, Berlin, 1989, 1–6 | DOI | MR | Zbl

[26] F. Mukhamedov, M. Saburov, “Phase transitions for $XY$-model on the Cayley tree of order three in quantum Markov chain scheme”, C. R. Math. Acad. Sci. Paris, 349:7-8 (2011), 425–428 | Zbl