The Fixed-Point Index of Nonlinear Operators in Menger PN-Spaces
Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 104-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the topological degree for a compact continuous operator defined on an open subset of a Menger PN-space is generalized. The new concept of fixed-point index in Menger PN-spaces is introduced, the most important properties of the fixed-point index are established, and some other results are given.
Keywords: fixed-point index, Menger PN-space, compact continuity, probabilistic metric space, distribution function.
Mots-clés : $T$-retraction
@article{MZM_2011_90_1_a9,
     author = {Qiuying Li and Chuanxi Zhu},
     title = {The {Fixed-Point} {Index} of {Nonlinear} {Operators} in {Menger} {PN-Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {104--112},
     publisher = {mathdoc},
     volume = {90},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a9/}
}
TY  - JOUR
AU  - Qiuying Li
AU  - Chuanxi Zhu
TI  - The Fixed-Point Index of Nonlinear Operators in Menger PN-Spaces
JO  - Matematičeskie zametki
PY  - 2011
SP  - 104
EP  - 112
VL  - 90
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a9/
LA  - ru
ID  - MZM_2011_90_1_a9
ER  - 
%0 Journal Article
%A Qiuying Li
%A Chuanxi Zhu
%T The Fixed-Point Index of Nonlinear Operators in Menger PN-Spaces
%J Matematičeskie zametki
%D 2011
%P 104-112
%V 90
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a9/
%G ru
%F MZM_2011_90_1_a9
Qiuying Li; Chuanxi Zhu. The Fixed-Point Index of Nonlinear Operators in Menger PN-Spaces. Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 104-112. http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a9/

[1] H. Amman, Lectures on some Fixed Point Theorems, Monografias de Matematica, Rio de Janeiro, 1974

[2] M. A. Krasnoselskii, Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR | Zbl

[3] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Inst. of Math. Sci., New York, 1974 | MR | Zbl

[4] J. T. Schwartz, Nonlinear Functional Analysis, Notes in Mathematics and its Applications, Gordon and Breach Sci. Publ., New York, 1969 | MR | Zbl

[5] H. Amman, “Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces”, SIAM Rev., 18:4 (1976), 620–709 | DOI | MR

[6] S. S. Chang, J. C. Yeol, M. K. Shi, Probabilistic Metric Spaces and Nonlinear Operator Theory, Sichuan Univ. Press, Chengdu, 1994

[7] S. S. Zhang, Y. Q. Chen, “Topological degree theory and fixed point theorems in probabilistic metric spaces”, Appl. Math. Mech. (English Ed.), 10:6 (1989), 495–505 | DOI | MR | Zbl

[8] S. S. Chang, B. S. Lee, Y. J. Cho, Y. Q. Chen, S. M. Kang, J. S. Jung, “Generalized contraction mapping principle and differential equations in probabilistic metric spaces”, Proc. Amer. Math. Soc., 124 (1996), 2367–2376 | DOI | MR | Zbl

[9] Q. Y. Li, C. X. Zhu, “Some new fixed points in Z-P-S space”, J. Systems Sci. Math. Sci., 28:4 (2008), 400–405 | MR | Zbl

[10] C. X. Zhu, “Several nonlinear operator problems in the Menger PN space”, Nonlinear Anal., 65:7 (2006), 1281–1284 | DOI | MR | Zbl

[11] C. X. Zhu, “Generalizations of Krasnoselskii's theorem and Petryshyn's theorem”, Appl. Math. Lett., 19:7 (2006), 628–632 | MR | Zbl

[12] C. X. Zhu, “A class of random operator equations in the Hilbert space”, Acta Math. Sinica (Chin. Ser.), 47:4 (2004), 641–646 | MR | Zbl

[13] C. X. Zhu, “Some theorems in the X-M-PN Space”, Appl. Math. Mech. (English Ed.), 21:2 (2000), 181–184 | MR | Zbl

[14] C. X. Zhu, C. F. Chen, “Calculations of random fixed point index”, J. Math. Anal. Appl., 339:2 (2008), 839–844 | DOI | MR | Zbl

[15] C. X. Zhu, Z. B. Xu, “Inequalities and solution of an operator equation”, Appl. Math. Lett., 21:6 (2008), 607–611 | DOI | MR | Zbl