Homogenization of Monotone Operators Under Conditions of Coercitivity and Growth of Variable Order
Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 53-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a homogenization procedure for the Dirichlet boundary-value problem for an elliptic equation of monotone type in the domain $\Omega\subset\mathbb R^d$. The operator of the problem satisfies the conditions of coercitivity and of growth with variable order $p_\varepsilon(x)=p(x/\varepsilon)$; furthermore, $p(y)$ is periodic, measurable, and satisfies the estimate $1\alpha\le p(y)\le\beta\infty$, while the parameter $\varepsilon>0$ tends to zero. Here $\alpha$ and $\beta$ are arbitrary constants. Taking Lavrentev's phenomenon into account, we consider solutions of two types: $H$- and $W$-solutions. Each of the solution types calls for a distinct homogenization procedure. Its justification is carried out by using the corresponding version of the lemma on compensated compactness, which is proved in the paper.
Keywords: homogenization of monotone operators, Dirichlet boundary-value problem, coercitivity condition, compensated compactness, Sobolev–Orlicz space.
Mots-clés : elliptic equation
@article{MZM_2011_90_1_a6,
     author = {V. V. Zhikov and S. E. Pastukhova},
     title = {Homogenization of {Monotone} {Operators} {Under} {Conditions} of {Coercitivity} and {Growth} of {Variable} {Order}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {53--69},
     publisher = {mathdoc},
     volume = {90},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a6/}
}
TY  - JOUR
AU  - V. V. Zhikov
AU  - S. E. Pastukhova
TI  - Homogenization of Monotone Operators Under Conditions of Coercitivity and Growth of Variable Order
JO  - Matematičeskie zametki
PY  - 2011
SP  - 53
EP  - 69
VL  - 90
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a6/
LA  - ru
ID  - MZM_2011_90_1_a6
ER  - 
%0 Journal Article
%A V. V. Zhikov
%A S. E. Pastukhova
%T Homogenization of Monotone Operators Under Conditions of Coercitivity and Growth of Variable Order
%J Matematičeskie zametki
%D 2011
%P 53-69
%V 90
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a6/
%G ru
%F MZM_2011_90_1_a6
V. V. Zhikov; S. E. Pastukhova. Homogenization of Monotone Operators Under Conditions of Coercitivity and Growth of Variable Order. Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 53-69. http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a6/

[1] V. V. Zhikov, “Razreshimost trekhmernoi zadachi o termistore”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Tr. MIAN, 261, MAIK, M., 2008, 101–114 | MR

[2] V. V. Zhikov, “Ob effekte Lavrenteva”, Dokl. RAN, 345:1 (1995), 10–14 | MR | Zbl

[3] V. V. Zhikov, “On Lavrentiev's phenomenon”, Russ. J. Math. Phys., 3:2 (1995), 249–269 | MR | Zbl

[4] V. V. Zhikov, “Effekt Lavrenteva i usrednenie nelineinykh variatsionnykh zadach”, Differents. uravneniya, 27:1 (1991), 42–50 | MR | Zbl

[5] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993 | MR | Zbl

[6] V. V. Zhikov, “Homogenization of a Navier–Stokes type system for electrorheological fluid”, Complex Var. Elliptic Equ., 2011 (to appear)

[7] I. Ekland, R. Temam, Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR | Zbl

[8] F. Murat, “Compacité par compensation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5:3 (1978), 489–507 | MR | Zbl

[9] V. V. Zhikov, S. E. Pastukhova, “O printsipe kompensirovannoi kompaktnosti”, Dokl. RAN, 433:5 (2010), 590–595 | MR | Zbl

[10] V. V. Zhikov, S. E. Pastukhova, “Lemmy o kompensirovannoi kompaktnosti v ellipticheskikh i parabolicheskikh uravneniyakh”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Tr. MIAN, 270, MAIK, M., 2010, 110–137 | MR